Cours Outils de programmation pour les mathématiques

Spécialité : Mathématique et Informatique

LMD 1ére année

Introduction à l'environnement MATLAB

1.1. Introduction

MATLAB (**MAT**rix **LAB**oratory) est un environnement de programmation interactif pour le calcul scientifique, la programmation et la visualisation des données.

Il est très utilisé dans les domaines d'ingénierie et de recherche scientifique, ainsi qu'aux établissements d'enseignement supérieur. Sa popularité est due principalement à sa forte et simple interaction avec l'utilisateur mais aussi aux points suivants :

- ✓ Sa richesse fonctionnelle : avec MATLAB, il est possible de réaliser des manipulations mathématiques complexes en écrivant peu d'instructions. Il peut évaluer des expressions, dessiner des graphiques et exécuter des programmes classiques. Et surtout, il permet l'utilisation directe de plusieurs milliers de fonctions prédéfinie.
- ✓ La possibilité d'utiliser les boites à outils (toolboxes) : ce qui encourage son utilisation dans plusieurs disciplines (simulation, traitement de signal, imagerie, intelligence artificielle,...etc.).
- ✓ La simplicité de son langage de programmation : un programme écrit en MATLAB est plus facile à écrire et à lire comparé au même programme écrit en C ou en PASCAL.
- ✓ Sa manière de tout gérer comme étant des matrices, ce qui libère l'utilisateur de s'occuper de typage de données et ainsi de lui éviter les problèmes de transtypage.

A l'origine MATLAB était conçu pour faire principalement des calculs sur les vecteurs et les matrices d'où son nom 'Matrix Laboratory', mais par la suite il a était amélioré et augmenté pour pouvoir traiter beaucoup plus de domaines.

MATLAB n'est pas le seul environnement de calcul scientifique existant car il existe d'autres concurrents dont les plus importants sont MAPLE et MATHEMATICA. Il existe même des logiciels libres qui sont des clones de MATLAB comme SCILAB et OCTAVE.

1.2. L'environnement MATLAB

Actuellement MATLAB est à la version **7.x** et au démarrage il affiche plusieurs fenêtres. Selon la version on peut trouver les fenêtres suivantes :

- Current Folder : indique le répertoire courant ainsi que les fichiers existants.
- Workspace: indique toutes les variables existantes avec leurs types et valeurs.
- **Command History** : garde la trace de toutes les commandes entrées par l'utilisateur.
- **Command Window**: nous utilisons pour formuler nos expressions et interagir avec MATLAB, et c'est la fenêtre que nous utilisons tout au long de ce chapitre.

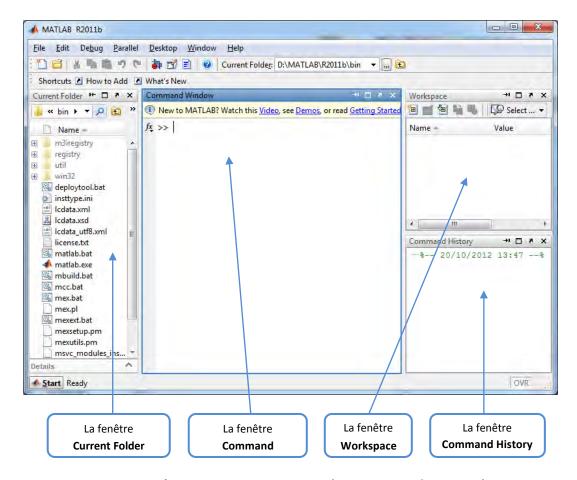


Figure 1: L'environnement MATLAB (Version 2011b ou 7.13)

1.2.1. Première interaction avec MATLAB

Le moyen le plus simple d'utiliser MATLAB est d'écrire directement dans la fenêtre de commande (Command Window) juste après le curseur (prompt) >>

Pour calculer une expression mathématique il suffit de l'écrire comme ceci :

```
>> 5+6 Puis on clique sur la touche Entrer pour voir le résultat ans =
```

Si nous voulons qu'une expression soit calculée mais sans afficher le résultat, on ajoute un point-virgule ';' à la fin de l'expression comme suit :

```
>> 5+6 ;
>>
```

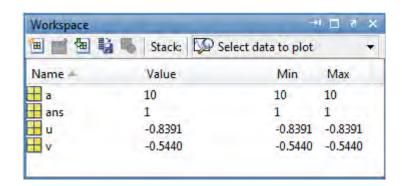
Pour créer une variable on utilise la structure simple : 'variable = définition' sans se préoccuper du type de la variable.

Par exemple :

Il est possible d'écrire plusieurs expressions dans la même ligne en les faisant séparées par des virgules ou des points virgules. Par exemple :

Le nom d'une variable ne doit contenir que des caractères alphanumériques ou le symbole '_' (underscore), et doit commencer par un alphabet. Nous devons aussi faire attention aux majuscules car le MATLAB est sensible à la casse (A et a sont deux identifiants différents). Les opérations de base dans une expression sont résumées dans le tableau suivant :

L'opération	La signification
+	L'addition
-	La soustraction
*	La multiplication
/	La division
\	La division gauche (ou la division inverse)
۸	La puissance
′	Le transposé
(et)	Les parenthèses spécifient l'ordre d'évaluation


Pour voir la liste des variables utilisées, soit on regarde à la fenêtre 'Workspace' soit on utilise les commandes 'whos' ou 'who'.

whos donne une description détaillée (le nom de la variable, son type et sa taille), par contre **who** donne juste les noms des variables.

Par exemple, dans ce cours on a utilisé 3 variables **a**, **u** et **v** :

>> who	>> who					
	Your var	riables	are:			
	a ans	s u	V			
>> who	S					
	Name	Size		Bytes	Class	Attributes
	a	1x1		8	double	
	ans	1x1		8	double	
	u	1x1		8	double	
	V	1x1		8	double	

L'utilisation de ces deux commandes peut être omise car des informations sur les variables sont visibles directement dans la fenêtre workspace.

1.2.2. Les nombres en MATLAB

MATLAB utilise une notation décimale conventionnelle, avec un point décimal facultatif '.' et le signe '+' ou '-' pour les nombres signés. La notation scientifique utilise la lettre 'e' pour spécifier le facteur d'échelle en puissance de 10. Les nombres complexes utilise les caractères 'i' et 'j' (indifféremment) pour designer la partie imaginaire. Le tableau suivant donne un résumé :

Le type		Exemples
Entier	5	-83
Réel en notation décimale	0.0205	3.1415926
Réel en notation scientifique	1.60210e-20	6.02252e23 (1.60210x10 ⁻²⁰ et 6.02252x10 ²³)
Complexe	5+3i	-3.14159j

MATLAB utilise toujours les nombres réels (double précision) pour faire les calculs, ce qui permet d'obtenir une précision de calcule allant jusqu'aux 16 chiffres significatifs. Mais il faut noter les points suivants :

- Le résultat d'une opération de calcule est par défaut affichée avec quatre chiffres après la virgule.
- Pour afficher davantage de chiffres utiliser la commande **format long** (14 chiffres après la virgule).
- Pour retourner à l'affichage par défaut, utiliser la commande format short.
- Pour afficher uniquement 02 chiffres après la virgule, utiliser la commande format bank.
- Pour afficher les nombres sous forme d'une ration, utiliser la commande format rat.

La commande	Signification
format short	affiche les nombres avec 04 chiffres après la virgule
format long	affiche les nombres avec 14 chiffres après la virgule
format bank	affiche les nombres avec 02 chiffres après la virgule
format rat	affiche les nombres sous forme d'une ration (a/b)

```
Exemple:
>> 8/3
      ans =
            2.6667
>> format long
>> 8/3
      ans =
             2.66666666666667
>> format bank
>> 8/3
      ans =
            2.67
>> format short
>> 8/3
      ans =
             2.6667
>> 7.2*3.1
      ans =
            22.3200
>> format rat
>> 7.2*3.1
      ans =
             558/25
>> 2.6667
ans =
   26667/10000
```

La fonction **vpa** peut être utilisé afin de forcer le calcule de présenter plus de décimaux significatifs en spécifiant le nombre de décimaux désirés.

```
Exemple :
>> sqrt(2)
    ans =
        1.4142

>> vpa(sqrt(2),50)
    ans =
        1.4142135623730950488016887242096980785696718753769
```

1.2.3. Les principales constantes, fonctions et commandes

La constante	Sa valeur
pi	π=3.1415
exp(1)	e=2.7183
i	$=\sqrt{-1}$
j	$=\sqrt{-1}$
Inf	8
NaN	Not a Number (Pas un numéro)
eps	$\varepsilon \approx 2 \times 10^{-16}$.

Parmi les fonctions fréquemment utilisées, on peut noter les suivantes :

La fonction	Sa signification
sin(x)	le sinus de x (en radian)
cos(x)	le cosinus de x (en radian)
tan(x)	le tangent de x (en radian)
asin(x)	l'arc sinus de x (en radian)
acos(x)	l'arc cosinus de x (en radian)
atan(x)	l'arc tangent de x (en radian)
sqrt(x)	la racine carrée de x \rightarrow $\sqrt{.}$
abs(x)	la valeur absolue de x → x
exp(x)	$= e^{x}$
log(x)	logarithme naturel de $x \rightarrow ln(x) = log_e(x)$
log10(x)	logarithme à base 10 de $x \rightarrow \log_{10}(x)$
imag(x)	la partie imaginaire du nombre complexe x
real(x)	la partie réelle du nombre complexe x
round(x)	arrondi un nombre vers l'entier le plus proche
floor(x)	arrondi un nombre vers l'entier le plus petit → min{n n≤x, n entier}
ceil(x)	arrondi un nombre vers l'entier le plus grand → max{n n≥x, n entier}

MATLAB offre beaucoup de commandes pour l'interaction avec l'utilisateur. Nous nous contentons pour l'instant d'un petit ensemble, et nous exposons les autres au fur et à mesure de l'avancement du cours.

La commande	Sa signification		
who	Affiche le nom des variables utilisées		
whos	Affiche des informations sur les variables utilisées		
clear x y	Supprime les variables x et y		
clear, clear all	Supprime toutes les variables		
clc	Efface l'écran des commandes		
exit, quit	Fermer l'environnement MATLAB		
	Définit le format de sortie pour les valeurs numériques		
	format long : affiche les nombres avec 14 chiffres après la virgule		
format	format short: affiche les nombres avec 04 chiffres après la virgule		
	format bank : affiche les nombres avec 02 chiffres après la virgule		
	format rat : affiche les nombres sous forme d'une ration (a/b)		

1.2.4. La priorité des opérations dans une expression

L'évaluation d'une expression s'exécute de gauche à droite en considérant la priorité des opérations indiquée dans le tableau suivant :

Les opérations	La priorité (1=max, 4=min)
Les parenthèses (et)	1
La puissance et le transposé ^ et '	2
La multiplication et la division * et /	3
L'addition et la soustraction + et -	4

Par exemple 5+2*3 = 11 et $2*3^2 = 18$

Exercice récapitulatif :

Créer une variable x et donnez-la la valeur 2, puis écrivez les expressions suivantes :

- $3x^3-2x^2+4x$
- $\bullet \quad \frac{e^{1+x}}{1-\sqrt{2x}}$
- $|\sin^{-1}(2x)|$
- $\frac{\ln(x)}{2x^3}$ -1

La solution:

```
>> x=2;
>> 3*x^3-2*x^2+4*x;
>> exp(1+x)/(1-sqrt(2*x));
>> abs(asin(2*x));
>> log(x)/(2*x^3)-1;
```

2. Les vecteurs et les matrices

MATLAB était conçu à l'origine pour permettre aux mathématiciens, scientifiques et ingénieurs d'utiliser facilement les mécanismes de l'algèbre linéaire. Par conséquent, l'utilisation des vecteurs et des matrices est très intuitif et commode en MATLAB.

2.1. Les vecteurs

Un vecteur est une liste ordonnée d'éléments. Si les éléments sont arrangés horizontalement on dit que le vecteur est un vecteur ligne, par contre si les éléments sont arrangés verticalement on dit que c'est un vecteur colonne.

Pour créer un **vecteur ligne** il suffit d'écrire la liste de ses composants entre crochets [et] et de les séparés par des espaces ou des virgules comme suit :

Pour créer un vecteur colonne il est possible d'utiliser une des méthodes suivantes :

1. écrire les composants du vecteur entre crochets [et] et de les séparés par des points-virgules (;) comme suit :

2. écrire verticalement le vecteur :

```
>> U = [
    4
    -2
    1
]
U =
```

4

-2

1

3. calculer le transposé d'un vecteur ligne :

Si les composants d'un vecteur \mathbf{X} sont ordonnés avec des valeurs consécutives, nous pouvons le noter avec la notation suivante :

```
X = premier_élément : dernier_élément | (Les crochets sont facultatifs dans ce cas)
```

Par exemple:

Si les composants d'un vecteur **X** sont ordonnés avec des valeurs consécutives mais avec un pas (d'incrémentation/décrémentation) différente de 1, nous pouvons spécifier le pas avec la notation :

Par exemple:

```
>> X = [0:2:10]
                                % le vecteur X contient les nombres pairs < 12
      X =
                         4
                                      8
                   2
                               6
                                           10
>> X = [-4:2:6]
                                 % on peut aussi écrire colon(-4,2,6)
      X =
             -4
                   -2
>> X = 0:0.2:1
                                 % on peut aussi écrire colon(0,0.2,1)
      X =
                  0.2000
                            0.4000
                                       0.6000
             0
                                                 0.8000
                                                           1.0000
```

On peut écrire des expressions plus complexes comme :

```
>> V = [ 1:2:5 , -2:2:1 ]
        V =
                1
                       3
                               5
                                     -2
                                              0
\Rightarrow A = [1 2 3]
        A =
                       2
                               3
                1
\Rightarrow B = [A, 4, 5, 6]
        B =
                1
                        2
                                3
                                        4
                                               5
                                                       6
```

2.1.1. Référencement et accès aux éléments d'un vecteur

L'accès aux éléments d'un vecteur se fait en utilisant la syntaxe générale suivante :

nom_vecteur (positions)

Les parenthèses (et) sont utilisées pour la consultation. Les crochets [et] sont utilisés uniquement pendant la création. positions : peut être un simple numéro, ou une liste de numéro (un vecteur de positions)

Exemples:

2.1.2. Les opérations élément-par-élément pour les vecteurs

Avec deux vecteurs \vec{u} et \vec{v} , il est possible de réaliser des calcules élément par élément en utilisant les opérations suivantes :

		Evenente even
1/2	Cianification	Exemple avec :
L'opération	Signification	>> u = [-2, 6, 1];
		>> v = [3, -1, 4] ;
		>> u+2
		ans =
+	Addition des vecteurs	0 8 3
	Addition des vecteurs	>> u+v
		ans =
		1 5 5
		>> u-2
		ans =
		-4 4 -1
-	Soustraction des vecteurs	>> u-v
		ans =
		-5 7 -3
		>> u*2
		ans =
		-4 12 2
		>> u.*2
*	Multiplication álámont par álámont	ans =
•	Multiplication élément par élément	-4 12 2
		>> u.*v
		ans =
		-6 -6 4
	Division élément par élément	>> u/2
		ans =
		-1.0000 3.0000 0.5000
,		>> u./2
./		ans =
		-1.0000 3.0000 0.5000
		>> u./v
		ans =
		-0.6667 -6.0000 0.2500
		>> u.^2
.^		ans =
	Puissance élément par élément	4 36 1
		>> u.^v
		ans =
		-8.0000 0.1667 1.0000

L'écriture d'une expression tel que : u^2 génère une erreur car cette expression réfère a une multiplication de matrices (u*u doit être réécrite u*u' ou u'*u pour être valide).

2.1.3. La fonction linspace

La création d'un vecteur dont les composants sont ordonnés par intervalle régulier et avec un nombre d'éléments bien déterminé peut se réaliser avec la fonction :

linspace (début, fin, nombre d'éléments)

Le pas d'incrémentation est calculé automatiquement par MATLAB selon la formule :

$$le \ pas = \frac{fin - debut}{nombre \ 'éléments - 1}$$

Par exemple:

La taille d'un vecteur (le nombre de ses composants) peut être obtenue avec la fonction **length** comme suit :

2.2. Les matrices

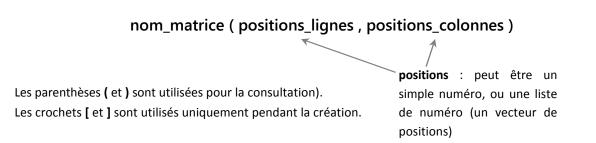
Une matrice est un tableau rectangulaire d'éléments (bidimensionnels). Les vecteurs sont des matrices avec une seule ligne ou une seule colonne (monodimensionnels). Pour insérer une matrice, il faut respecter les règles suivantes :

- Les éléments doivent être mises entre des crochets [et]
- Les espaces ou les virgules sont utilisés pour séparer les éléments dans la même ligne
- Un point-virgule (ou la touche **entrer**) est utilisé pour séparer les lignes

Pour illustrer cela, considérant la matrice suivante :

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$

Cette matrice pout être écrite en MATLAB avec une des syntaxes suivantes :


Le nombre d'éléments dans chaque ligne (nombre de colonnes) doit être identique dans toutes les lignes de la matrice, sinon une erreur sera signalée par MATLAB. Par exemple :

Une matrice peut être générée par des vecteurs comme le montre les exemples suivants :

>> x = 1:4	% création d'un vecteur x
x =	
1 2 3	4
>> y = 5:5:20	% création d'un vecteur y
y =	
5 10 15	20
>> z = 4:4:16	% création d'un vecteur z
z =	
4 8 12	16
>> A = [x ; y ; z]	% A est formée par les vecteurs lignes x, y et z
A =	
1 2 3	4
5 10 15	20
4 8 12	16
>> B = [x' y' z']	% B est formée par les vecteurs colonnes x, y et z
B =	
1 5 4	
2 10 8	
3 15 12	
4 20 16	
>> C = [x ; x]	% C est formée par le même vecteur ligne x 2 fois
C =	
1 2 3	4
1 2 3	4

2.2.1. Référencement et accès aux éléments d'une matrice

L'accès aux éléments d'une matrice se fait en utilisant la syntaxe générale suivante :

Il est utile de noter les possibilités suivantes :

- L'accès à un élément de la ligne i et la colonne j se fait par : A(i,j)
- L'accès à toute la ligne numéro i se fait par : A(i,:)
- L'accès à toute la colonne numéro j se fait par : A(:,j)

Exemples:

```
\Rightarrow A = [1,2,3,4 ; 5,6,7,8 ; 9,10,11,12]
                                                       % création de la matrice A
       A =
                              3
                                     4
               1
                       2
               5
                              7
                                     8
                       6
                      10
                             11
                                    12
                                       % l'élément sur la 2<sup>ème</sup> ligne à la 3<sup>ème</sup> colonne
\Rightarrow A(2,3)
       ans =
               7
                                       % tous les éléments de la 1<sup>ère</sup> ligne
>> A(1,:)
       ans =
                       2
                              3
               1
                                     4
                                       % tous les éléments de la 2<sup>ème</sup> colonne
>> A(:,2)
       ans =
               2
               6
               10
                                       % tous les éléments de la 2^{\rm ème} et la 3^{\rm ème} ligne
>> A(2:3,:)
       ans =
                              7
               5
                                     8
                       6
               9
                     10
                             11
                                    12
\rightarrow A(1:2,3:4)
                                       % La sous matrice supérieure droite de taille 2x2
        ans =
               3
                       4
               7
                       8
>> A([1,3],[2,4])
                                       % la sous matrice : lignes(1,3) et colonnes (2,4)
       ans =
               2
                       4
               10
                       12
\rightarrow A(:,3) = []
                                       % Supprimer la troisième colonne
       A =
               1
                       2
                              4
               5
                       6
                              8
               9
                      10
                             12
\Rightarrow A(2,:) = []
                                       % Supprimer la deuxième ligne
       A =
               1
                       2
                              4
               9
                      10
                             12
```

Les dimensions d'une matrice peuvent être acquises en utilisant la fonction **size**. Cependant, avec une matrice A de dimension $\mathbf{m} \times \mathbf{n}$ le résultat de cette fonction est un vecteur de deux composants, une pour \mathbf{m} et l'autre pour \mathbf{n} .

Ici, la variable **d** contient les dimensions de la matrice A sous forme d'un vecteur. Pour obtenir les dimensions séparément on peut utiliser la syntaxe :

2.2.2. Génération automatique des matrices

En MATLAB, il existe des fonctions qui permettent de générer automatiquement des matrices particulières. Dans le tableau suivant nous présentons-les plus utilisées :

La fonction	Signification
zeros(n)	Génère une matrice n × n avec tous les éléments = 0
zeros(m,n)	Génère une matrice m × n avec tous les éléments = 0
ones(n)	Génère une matrice n × n avec tous les éléments = 1
ones(m,n)	Génère une matrice m × n avec tous les éléments = 1
eye(n)	Génère une matrice identité de dimension n × n
magic(n)	Génère une matrice magique de dimension n × n
rand(m,n)	Génère une matrice de dimension m × n de valeurs aléatoires

2.2.3. Les opérations de base	sur les matrices
-------------------------------	------------------

L'opération	Signification		
+	L'addition		
-	La soustraction		
.*	La multiplication élément par élément		
./	La division élément par élément		
.\	La division inverse élément par élément		
.^	La puissance élément par élément		
*	La multiplication matricielle		
/	La division matricielle (A/B) = (A*B ⁻¹)		

Les opérations élément par éléments sur les matrices sont les mêmes que ceux pour les vecteurs (la seule condition nécessaire pour faire une opération élément par élément est que les deux matrices aient les mêmes dimensions). Par contre la multiplication ou la division des matrices requiert quelques contraintes (consulter un cours sur l'algèbre matricielle pour plus de détail).

Exemple:

```
>> A=ones(2,3)
      A =
             1
                    1
                           1
             1
                    1
                           1
>> B=zeros(3,2)
      B =
                    0
             0
             0
                    0
             0
                    0
>> B=B+3
     3
            3
     3
            3
     3
            3
>> A*B
      ans =
             9
                    9
             9
                    9
>> B=[B , [3 3 3]']
                                 % ou bien B(:,3)=[3\ 3\ 3]'
      B =
             3
                    3
                           3
             3
                    3
                           3
             3
                    3
                           3
>> B=B(1:2,:)
                                 % ou bien B(3,:)=[]
      B =
             3
                    3
                           3
             3
                    3
                           3
>> A=A*2
      A =
             2
                    2
                           2
             2
                    2
                           2
```

```
>> A.*B

ans =

6 6 6 6
6 6 6

>> A*eye(3)

ans =

2 2 2 2
2 2
```

2.2.4. Fonctions utiles pour le traitement des matrices

Voici quelques fonctions parmi les plus utilisées concernant les matrices :

La fonction	L'utilité	Exemple d'utilisation
det	Calcule de déterminant d'une matrice	>> A = [1,2;3,4]; >> det(A) ans = -2
inv	Calcule l'inverse d'une matrice	>> inv(A) ans = -2.0000 1.0000 1.5000 -0.5000
rank	Calcule le rang d'une matrice	>> rank(A) ans = 2
trace	Calcule la trace d'une matrice	<pre>>> trace(A) ans = 5</pre>
eig	Calcule les valeurs propres	>> eig(A) ans = -0.3723 5.3723
dot	Calcule le produit scalaire de 2 vecteurs	<pre>>> v = [-1,5,3]; >> u = [2,-2,1]; >> dot(u,v) ans = -9</pre>
norm	Calcule la norme d'un vecteur	>> norm(u) ans = 3
cross	Calcule le produit vectoriel de 2 vecteurs	>> cross(u,v) ans = -11 -7 8
diag	Renvoie le diagonal d'une matrice	>> diag(A) ans = 1 4
diag(V)	Crée une matrice ayant le vecteur V dans le diagonal et 0 ailleurs.	>> V = [-5,1,3] >> diag(V) ans = -5 0 0 0 1 0 0 0 3

	T				
			,3;4,5	5,6;7,8,9]	
		B =			
		1	2	3	
		4	5	6	
		7	8	9	
		>> tril(B)		
		ans =			
		1	0	0	
		4	5	0	
		7	8	9	
tril	Renvoie la partie triangulaire inferieure	>> tril(B	1)		
3.	The state of the parties at tarrigation of the state of t	ans =			
		0	0	0	
		4	0	0	
		7	8	0	
			Ū		
		>> tril(B,-2)			
		ans =			
		0	0	0	
		0	0	0	
		7	0	0	
		>> triu(B		•	
		ans =	,		
			2	2	
		1		3	
		0	5	6 9	
		0	0	9	
		>> triu(B,-1)			
		ans =		_	
triu	Renvoie la partie triangulaire supérieure	1	2	3	
		4	5	6	
		0	8	9	
		>> triu(B	,1)		
		ans =			
		0	2	3	
		0	0	6	
		0	0	0	

3. Introduction à la programmation avec MATLAB

Nous avons vu jusqu'à présent comment utiliser MATLAB pour effectuer des commandes ou pour évaluer des expressions en les écrivant dans la ligne de commande (Après le prompt >>), par conséquent les commandes utilisées s'écrivent généralement sous forme d'une seule instruction (éventuellement sur une seule ligne). Cependant, il existe des problèmes dont la description de leurs solutions nécessite plusieurs instructions, ce qui réclame l'utilisation de plusieurs lignes.

Comme par exemple la recherche des racines d'une équation de second degré (avec prise en compte de tous les cas possibles).

Une collection d'instructions bien structurées visant à résoudre un problème donnée s'appelle un programme. Dans cette partie du cours, on va présenter les mécanismes d'écriture et d'exécution des programmes en MATLAB.

3.1. Généralités

3.1.1. Les commentaires

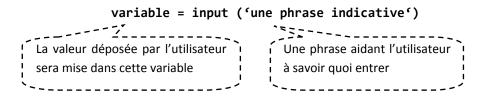
Les commentaires sont des phrases explicatives ignorées par MATLAB et destinées pour l'utilisateur afin de l'aider à comprendre la partie du code commentée.

En MATLAB un commentaire commence par le symbole % et occupe le reste de la ligne. Par exemple :

```
>> A=B+C; % Donner à A la valeur de B+C
```

3.1.2. Écriture des expressions longues

Si l'écriture d'une expression longue ne peut pas être enclavée dans une seule ligne, il est possible de la diviser en plusieurs lignes en mettant à la fin de chaque ligne au moins trois points.


Exemple:

```
>> (sin(pi/3)^2/cos(pi/3)^2)-(1-2*(5+sqrt(x)^5/(-2*x^3-x^2)^1+3*x));
```

Cette expression peut être réécrite de la façon suivante :

3.1.3. Lecture des données dans un programme (Les entrées)

Pour lire une valeur donnée par l'utilisateur, il est possible d'utiliser la commande **input**, qui a la syntaxe suivante :

Quand MATLAB exécute une telle instruction, La phrase indicative sera affichée à l'utilisateur en attendant que ce dernier entre une valeur.

Par exemple:

```
>> A = input ('Entrez un nombre entier : ')
   Entrez un nombre entier : 5
                                                           \downarrow
      5
>>
>> A = input ('Entrez un nombre entier : ');
   Entrez un nombre entier : 5
                                                           . 1
>>
>> B = input ('Entrez un vecteur ligne : ')
   Entrez un vecteur ligne : [1:2:8,3:-1:0]
      1
             3
                                3
                                       2
                                                    0
```

3.1.4. Ecriture des données dans un programme (Les sorties)

On a déjà vu que MATLAB peut afficher la valeur d'une variable en tapant seulement le nom de cette dernière.

Par exemple :

Avec cette méthode, MATLAB écrit le nom de la variable (A) puis le signe (=) suivie de la valeur désirée. Cependant, il existe des cas où on désire afficher uniquement la valeur de la variable (sans le nom et sans le signe =).

Pour cela, on peut utiliser la fonction disp, et qui a la syntaxe suivante : disp (objet)

La valeur de l'objet peut être un nombre, un vecteur, une matrice, une chaine de caractères ou une expression.

On signale qu'avec un vecteur ou une matrice vide, **disp** n'affiche rien.

Exemple:

```
% Afficher la valeur de A sans 'A = '
>> disp(A)
     5
>> disp(A);
                             % Le point virgule n'a pas d'effet
>> B
                             % Afficher le vecteur B par la méthode classique
   B =
      1
            3
                  5
                         7
                              3
                                     2
                                           1
                             % Afficher le vecteur B sans 'B = '
>> disp(B)
                         7
>> C = 3 :1 :0
                             % Création d'un vecteur C vide
   C =
   Empty matrix: 1-by-0
>> disp(C)
                             % disp n'affiche rien si le vecteur est vide
>>
```

3.2. Les expressions logiques

3.2.1. Les opérations logiques

L'opération de comparaison	Sa signification	
==	l'égalité	
~=	l'inégalité	
>	supérieur à	
<	inferieur à	
>=	supérieur ou égale à	
<=	inferieur ou égale à	
L'opération logique	Sa signification	
&	le et logique	
I	le ou logique	
~	la négation logique	

En MATLAB une variable logique peut prendre les valeurs **1** (vrai) ou **0** (faux) avec une petite règle qui admette que :

- 1) Toute valeur égale à 0 sera considérée comme fausse (= 0 ⇒ Faux)
- Toute valeur différente de 0 sera considérée comme vrai (≠0 ⇒ Vrai).
 Le tableau suivant résume le fonctionnement des opérations logiques :

	а		b	a & b	a b	~a
1	(vrai)	1	(vrai)	1	1	0
1	(vrai)	0	(faux)	0	1	0
0	(faux)	1	(vrai)	0	1	1
0	(faux)	0	(faux)	0	0	1

```
Par exemple:
```

```
>> x=10;
>> y=20;
>> x < y
                                  % affiche 1 (vrai)
       ans =
              1
>> x <= 10
                                  % affiche 1 (vrai)
       ans =
              1
>> x == y
                                  % affiche 0 (faux)
       ans =
\Rightarrow (0 < x) & (y < 30)
                                  % affiche 1 (vrai)
       ans =
>> (x > 10) | (y > 100)
                                  % affiche 0 (faux)
       ans =
>> \sim (x > 10)
                                  % affiche 1 (vrai)
       ans =
                                  % 10 est considéré comme vrai donc 1 & 1 = 1
>> 10 & 1
       ans =
              1
>> 10 & 0
                                  % 1 & 0 = 1
       ans =
              0
```

3.2.2. Comparaison des matrices

La comparaison des vecteurs et des matrices diffère quelque peu des scalaires, d'où l'utilité des deux fonctions 'isequal' et 'isempty' (qui permettent de donner une réponse concise pour la comparaison).

La fonction	Description
isequal	teste si deux (ou plusieurs) matrices sont égales (ayant les mêmes éléments partout). Elle renvoie 1 si c'est le cas, et 0 sinon.
isempty	teste si une matrice est vide (ne contient aucun élément). Elle renvoie 1 si c'est le cas, et 0 sinon.

Pour mieux percevoir l'impact de ces fonctions suivons l'exemple suivant :

```
>> A==B
                          % Tester si A=B ? (1 ou 0 selon la position)
      ans =
                   0
             1
                   1
                          % Tester si effectivement A et B sont égales (les mêmes)
>> isequal(A,B)
      ans =
                          % Créer la matrice vide C
>> C=[];
>> isempty(C)
                          % Tester si C est vide (affiche vrai = 1)
      ans =
             1
>> isempty(A)
                          % Tester si A est vide (affiche faux = 0)
      ans =
             0
```

3.3. Structures de contrôle de flux

Les structures de contrôle de flux sont des instructions permettant de définir et de manipuler l'ordre d'exécution des tâches dans un programme. Elles offrent la possibilité de réaliser des traitements différents selon l'état des données du programme, ou de réaliser des boucles répétitives pour un processus donnée.

MATLAB compte huit structures de contrôle de flux à savoir :

- if
- switch
- for
- while
- continue
- break
- try catch
- return

Nous exposons les quatre premières : (if, switch, for et while)

3.3.1. L'instruction if

L'instruction if est la plus simple et la plus utilisée des structures de contrôle de flux. Elle permette d'orienter l'exécution du programme en fonction de la valeur logique d'une

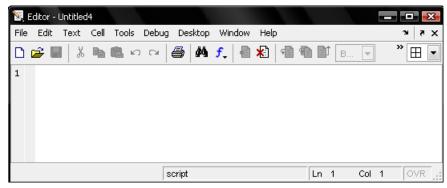
ou bien

```
if (condition)
        ensemble d'instructions 1
else
        ensemble d'instructions 2
end
```

Si la condition est évaluée à **vrai**, les instructions entre le **if** et le **end** seront exécutées, sinon elles ne seront pas (ou si un **else** existe les instructions entre le **else** et le **end** seront exécutées). S'il est nécessaire de vérifier plusieurs conditions au lieu d'une seule, on peut utiliser des clauses **elseif** pour chaque nouvelle condition, et à la fin on peut mettre un **else** dans le cas ou aucune condition n'a été évaluée à **vrai**. Voici donc la syntaxe générale :

```
if (expression_1)
    Ensemble d'instructions 1
elseif (expression_2)
    Ensemble d'instructions 2
    ....
elseif (expression_n)
    Ensemble d'instructions n
else
    Ensemble d'instructions si toutes les expressions étaient fausses
end
```

Par exemple, le programme suivant vous définit selon votre âge :


```
>>> age = input('Entrez votre âge : '); ...
  if (age < 2)
    disp('Vous êtes un bébé')
  elseif (age < 13)
    disp('Vous êtes un enfant')
  elseif (age < 18)
    disp ('Vous êtes un adolescent')
  elseif (age < 60)
    disp ('Vous êtes un adulte')
  else
    disp ('Vous êtes un vieillard')
  end</pre>
```

Comme vous pouvez le constatez, l'écriture d'un programme MATLAB directement après l'invité de commande (le prompt >>) est un peu déplaisant et ennuyeux.

Une méthode plus pratique consiste à écrire le programme dans un fichier séparé, et d'appeler ce programme (au besoin) en tapant le nom du fichier dans l'invité de commande. Cette approche est définie en MATLAB par les **M-Files**, qui sont des fichiers pouvant contenir les données, les programmes (scripts) ou les fonctions que nous développons.

Pour créer un M-Files il suffit de taper la commande **edit**, ou tout simplement aller dans le menu : **File** \rightarrow **New** \rightarrow **M-Files** (ou cliquer sur l'icône \square).

Dans tous les cas une fenêtre d'édition comme celle-ci va apparaitre :

Tout ce qui vous reste à faire et d'écrire votre programme dans cette fenêtre, puis l'enregistrer avec un nom (par exemple : 'Premier_Programme.m'). On signale que l'extension des fichiers M-Files est toujours '.m'.

Maintenant, si nous voulons exécuter notre programme, il suffit d'aller à l'invité de commande habituel (>>) puis taper le nom de notre fichier (sans le '.m') comme ceci :

Et l'exécution du programme va démarrer immédiatement.

Pour retourner à la fenêtre d'édition (après l'avoir fermer) il suffit de saisir la commande :

Exemple:

Créons un programme qui trouve les racines d'une équation de second degré désigné par : $ax^2+bx+c=0$.

Voici le **M-File** qui contient le programme, il est enregistré avec le nom :

'Equation2deg.m'

```
% Programme de résolution de l'équation a*x^2+b*x+c=0
a = input ('Entrez la valeur de a : ');
                                                % lire a
b = input ('Entrez la valeur de b : ');
                                                % lire b
b = input ('Entrez la valeur de b : ');
c = input ('Entrez la valeur de c : ');
                                                % lire c
delta = b^2-4*a*c;
                                                % Calculer delta
if delta<0
   disp('Pas de solution')
                                                % Pas de solution
elseif delta==0
   disp('Solution double : ')
                                                % Solution double
   x=-b/(2*a)
else
                                                % Deux solutions
   disp('Deux solutions distinctes: ')
   x1=(-b+sqrt(delta))/(2*a)
   x2=(-b-sqrt(delta))/(2*a)
```

Si nous voulons exécuter le programme, il suffit de taper le nom du programme :

```
>> Equation2deg

Entrez la valeur de a : -2

Entrez la valeur de b : 1

Entrez la valeur de c : 3

Deux solutions :

x1 =

-1

x2 =

1.5000
```

Ainsi, le programme va être exécuté en suivant les instructions écrites dans son **M-File**. Si une instruction est terminée par un point virgule, alors la valeur de la variable concernée ne sera pas affichée, par contre si elle termine par une virgule ou un saut à la ligne, alors les résultats seront affichés.

Remarque : Il existe la fonction **solve** prédéfinie en MATLAB pour trouver les racines d'une équation (et beaucoup plus). Si nous voulons l'appliquer sur notre exemple, il suffit d'écrire :

3.3.2. L'instruction switch

L'instruction **switch** exécute des groupes d'instructions selon la valeur d'une variable ou d'une expression. Chaque groupe est associé a une clause **case** qui définie si ce groupe doit être exécuté ou pas selon l'égalité de la valeur de ce **case** avec le résultat d'évaluation de l'expression de **switch**. Si tous les **case** n'ont pas étés acceptés, il est possible d'ajouter une clause **otherwise** qui sera exécutée seulement si aucun **case** n'est exécuté.

Donc, la forme générale de cette instruction est :

```
switch (expression)
    case valeur_1
        Groupe d'instructions 1
    case valeur_2
        Groupe d'instructions 2
        . . .
    case valeur_n
        Groupe d'instructions n
    otherwise
        Groupe d'instructions si tous les case ont échoué
end
```

```
Exemple:
```

L'exécution va donner:

```
Entrez un nombre : 50
x n'est pas 0 ou 10 ou 100
```

3.3.3. L'instruction for

L'instruction **for** répète l'exécution d'un groupe d'instructions un nombre déterminé de fois. Elle a la forme générale suivante :

```
for variable = expression_vecteur
         Groupe d'instructions
end
```

L'expression_vecteur corresponde à la définition d'un vecteur : début : pas : fin ou début : fin

La variable va parcourir tous les éléments du vecteur défini par l'expression, et pour chacun il va exécuter le groupe d'instructions.

Exemple:

Dans le tableau suivant, nous avons trois formes de l'instruction **for** avec le résultat MATLAB :

L'instruction for	<pre>for i = 1 : 4</pre>	<pre>for i = 1 : 2 : 4</pre>	<pre>for i = [1,4,7]</pre>
Le résultat de l'exécution	2 4 6 8	2 6	2 8 14

3.3.4. L'instruction while

L'instruction **while** répète l'exécution d'un groupe d'instructions un nombre indéterminé de fois selon la valeur d'une condition logique. Elle a la forme générale suivante :

```
while (condition)
        Ensemble d'instructions
end
```

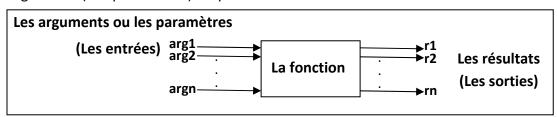
Tant que l'expression de **while** est évaluée à **true**, l'ensemble d'instructions s'exécutera en boucle.

```
Exemple:
```

Ce programme demande à l'utilisateur d'entrer un nombre. Si ce nombre n'est pas égal à **0** alors la boucle se répète, sinon (si la valeur donnée est **0**) alors le programme s'arrête.

3.4. Exercice récapitulatif

Il existe des fonctions prédéfinis en MATLAB donnée dans le tableau ci-dessous. Essayons de les programmer (pour un vecteur donnée **V**).


La fonction	Description	Le programme qui la simule	
sum (V)	La somme des éléments d'un vecteur V	<pre>n = length(V); somme = 0; for i = 1 : n</pre>	
prod (V)	Le produit des éléments d'un vecteur V	<pre>n = length(V); produit = 1; for i = 1: n produit=produit*V(i); end disp(produit)</pre>	
mean (V)	La moyenne des éléments d'un vecteur V	<pre>n = length(V); moyenne = 0; for i = 1 : n</pre>	

diag (V)	Créer une matrice ayant le vecteur V dans le diagonale, et 0 ailleurs	<pre>n = length(V); A = zeros(n); for i = 1 : n A(i,i)=V(i); end disp(A)</pre>	
sort (V)	Ordonne les éléments du vecteur V par ordre croissant	<pre>n = length(V); for i = 1 : n-1 for j = i+1 : n if V(i) > V(j) tmp = V(i); V(i) = V(j); V(j) = tmp; end end end disp(V)</pre>	

3.5. Les fonctions

Il existe une différence de concept entre les fonctions en informatique ou en mathématique :

1. En informatique, une fonction est une routine (un sous programme) qui accepte des arguments (des paramètres) et qui renvoie un résultat.

2. En mathématique une fonction \mathbf{f} est une relation qui attribue à chaque valeur \mathbf{x} au plus une seule valeur $\mathbf{f}(\mathbf{x})$.

3.5.1. Création d'une fonction dans un M-Files

MATLAB contient un grand nombre de fonctions prédéfinies comme **sin**, **cos**, **sqrt**, **sum**, ... etc. Et il est possible de créer nos propres fonctions en écrivant leurs codes source dans des fichiers **M-Files** (portant le même nom de fonction) en respectant la syntaxe suivante :

```
function [r_1, r_2, ..., r_n] = nom\_fonction (arg_1, arg_2, ..., arg_n)

% le corps de la fonction
...

r_1 = ... % la valeur retournée pour r_1

r_2 = ... % la valeur retournée pour

r_2 ...

r_n = ... % la valeur retournée pour r_n

end % le end est facultatif
```

Ou : $r_1...r_n$ sont les valeurs retournées, et $arg_1...arg_n$ sont les arguments.

Exemple:

Ecrire une fonction qui calcule la racine carrée d'un nombre par la méthode de Newton (vue dans le TP).

Solution:

L'exécution :

```
>> x = racine(9)
    x =
        3
>> x = racine(196)
    x =
        14.0000
>> x = racine([16,144,9,5])
    x =
        4.0000   12.0000   3.0000   2.2361
```

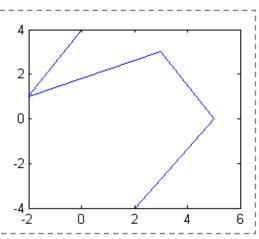
Remarque:

Contrairement à un programme (un script), une fonction peut être utilisée dans une expression par exemple : **2*racine(9)-1**.

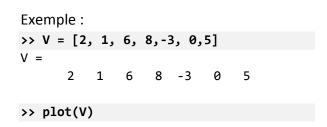
3.5.2. Comparaison entre un programme est une fonction

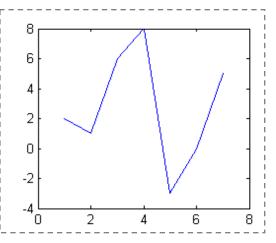
Un programme	Une fonction
<pre>a = input('Entrez un nombre positif: '); x = a/2; precision = 6; for i = 1:precision x = (x + a ./ x) / 2; end disp(x)</pre>	<pre>function r = racine(nombre) r = nombre/2; precision = 6; for i = 1:precision r = (r + nombre ./ r) / 2; end</pre>
L'exécution: >> racine Entrez un nombre positif: 16 ↓ 4	L'exécution: >> racine(16) ans = 4
on ne peut pas écrire des expressions tel que : >> 2 * racine + 4	on peut écrire sans problème des expressions comme : >> 2 * racine(x) + 4

4. Les graphiques et la visualisation des données en MATLAB


Partant du principe qu'une image vaut mieux qu'un long discours, MATLAB offre un puissant système de visualisation qui permet la présentation et l'affichage graphique des données d'une manière à la fois efficace et facile.

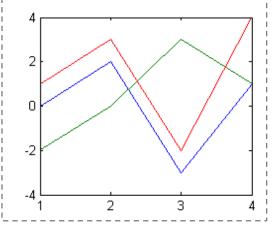
Dans cette partie du cours, nous allons présenter les principes de base indispensables pour dessiner des courbes en MATLAB.


4.1. La fonction plot

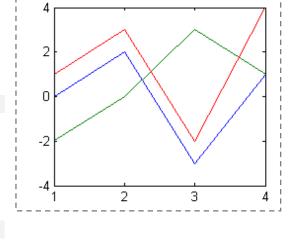

La fonction **plot** est utilisable avec des vecteurs ou des matrices. Elle trace des lignes en reliant des points de coordonnées définies dans ses arguments, et elle à plusieurs formes :

❖ Si elle contient deux vecteurs de la même taille comme arguments : elle considère les valeurs du premier vecteur comme les éléments de l'axe X (les abscisses), et les valeurs du deuxième vecteur comme les éléments de l'axe Y (les ordonnées).

Si elle contient un seul vecteur comme argument : elle considère les valeurs du vecteur comme les éléments de l'axe Y (les ordonnées), et leurs positions relatives définirons l'axe X (les abscisses).



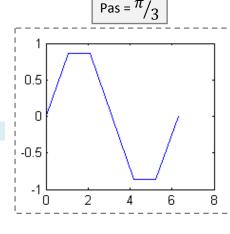
Si elle contient une seule matrice comme argument : elle considère les valeurs de chaque colonne comme les éléments de l'axe Y, et leurs positions relatives (le numéro de ligne) comme les valeurs de l'axe X. Donc, elle donnera plusieurs

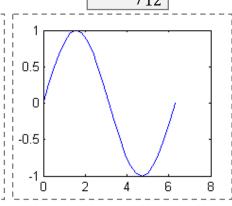

courbes (une pour chaque colonne).

Si elle contient deux matrices comme arguments : elle considère les valeurs de chaque colonne de la première matrice comme les éléments de l'axe X, et les valeurs de chaque colonne de la deuxième matrice comme les valeurs de l'axe Y.

Exemple:

>> plot(K,M)


Il est évident que plus le nombre de coordonnées augmente plus la courbe devienne précise. Par exemple pour dessiner la courbe de la fonction y = $\sin(x)$ sur $[0, 2\pi]$ on peut écrire :


La première figure

- >> x = 0:pi/3:2*pi;
- \Rightarrow y = sin(x);
- >> plot(x,y)

La deuxième figure

- >> x = 0:pi/12:2*pi; \Rightarrow y = sin(x);
- >> plot(x,y)

4.2. Modifier l'apparence d'une courbe

Il est possible de manipuler l'apparence d'une courbe en modifiant la couleur de la courbe, la forme des points de coordonnées et le type de ligne reliant les points.

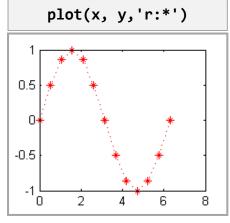
Pour cela, on ajoute un nouveau argument (qu'on peut appeler un marqueur) de type chaine de caractère à la fonction **plot** comme ceci :

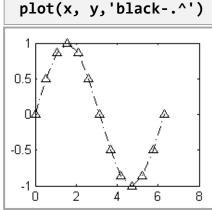
Le contenu du marqueur est une combinaison d'un ensemble de caractères spéciaux rassemblés dans le tableau suivant :

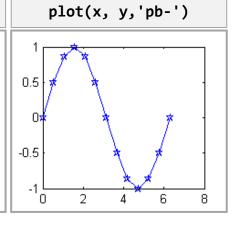
Couleur de la courbe			Représent	ation des points
le caractère	son effet		le caractère	son effet
b ou blue	courbe en bleu		•	un point.
g ou green	courbe en vert		O	un cercle ●
r ou red	courbe en rouge	e	x	le symbole x
c ou cyan	entre le vert et	le bleu	+	le symbole +
m ou magenta	en rouge violace	é vif	*	une étoile *
y ou yellow	courbe en jaune	9	S	un carré ■
k ou black	courbe en noir		d	un losange ♦
Style	de la courbe		v	triangle inferieur 🔻
le caractère	son eff	et	^	triangle supérieur 🔺
-	en ligne plein		<	triangle gauche ◀
:	en pointillé		>	triangle droit ▶
-,	en point tiret		р	pentagramme ★
	en tiret		h	hexagramme ≭

Exemple:

Essayons de dessiner la fonction y = $\sin(x)$ pour x = $[0 ... 2\pi]$ avec un pas = $\pi/6$.


 \Rightarrow y = sin(x);


En changeant le marqueur on obtient des résultats différents, et voici quelques exemples :


Couleur rouge, en pointillé et avec des étoiles

Couleur noire, en point tiret et avec des rectangles sup

Couleur bleu, en ligne plein et avec des pentagrammes

4.3. Annotation d'une figure

Dans une figure, il est préférable de mettre une description textuelle aidant l'utilisateur à comprendre la signification des axes et de connaître le but ou l'intérêt de la visualisation concernée.

Il est très intéressant également de pouvoir signaler des emplacements ou des points significatifs dans une figure par un commentaire signalant leurs importances.

✓ Pour donner un titre à une figure contenant une courbe nous utilisons la fonction title comme ceci :

```
>> title('titre de la figure')
```

✓ Pour donner un titre pour l'axe vertical des ordonnées y, nous utilisons la fonction ylabel comme ceci :

```
>> ylabel('Ceci est l''axe des ordonnées Y')
```

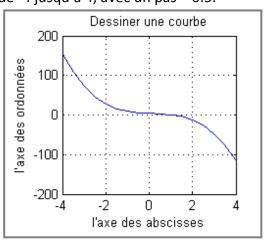
✓ Pour donner un titre pour l'axe horizontal des abscisses x, nous utilisons la fonction xlabel comme ceci :

```
>> xlabel('Ceci est l''axe des abscisses X')
```

✓ Pour écrire un texte (un message) sur la fenêtre graphique à une position indiquée par les coordonnées **x** et **y**, nous utilisons la fonction **text** comme ceci :

```
>> text(x, y, 'Ce point est important')
```

✓ Pour mettre un texte sur une position choisie manuellement par la souris, nous utilisons la fonction **gtext**, qui a la syntaxe suivante :

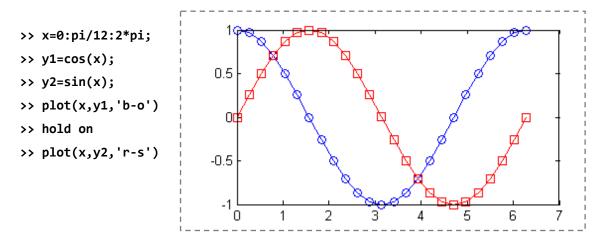

```
>> gtext('Ce point est choisi manuellement')
```

✓ Pour mettre un quadrillage (une grille), utilisez la commande grid (ou grid on). Pour l'enlever réutiliser la même commande grid (ou grid off).

Exemple:

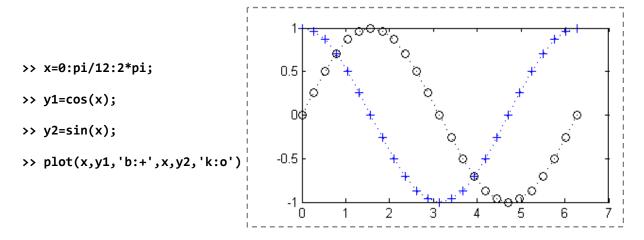
Dessinons la fonction : $y = -2x^3+x^2-2x+4$ pour x varie de -4 jusqu'à 4, avec un pas = 0.5.

```
>> x = -4:0.5:4;
>> y = -2*x.^3+x.^2-2*x+4;
>> plot(x,y)
>> grid
>> title('Dessiner une courbe')
>> xlabel('1''axe des abscisses')
>> ylabel('1''axe des ordonnées')
```



4.4. Dessiner plusieurs courbes dans la même figure

Par défaut en MATLAB, chaque nouveau dessin avec la commande **plot** efface le précédent. Pour forcer une nouvelle courbe à coexister avec les précédentes courbes, Il existe au moins trois méthodes :

4.4.1. La commande hold

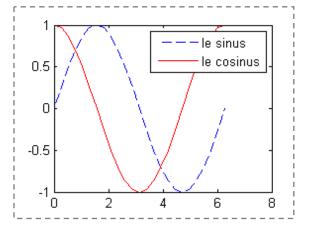

La commande **hold** (ou **hold on**) active le mode 'préservation des anciennes courbes' ce qui permette l'affichage de plusieurs courbes dans la même figure. Pour annuler son effet il suffit de réécrire **hold** (ou **hold off**).

Par exemple pour dessiner la courbe des deux fonctions cos(x) et sin(x) dans la même figure, on peut écrire :

4.4.2. Utiliser plot avec plusieurs arguments

On peut utiliser **plot** avec plusieurs couples (x,y) ou triples (x ,y, 'marqueur') comme arguments. Par exemple pour dessiner les mêmes fonctions précédentes on écrit :

4.4.3. Utiliser des matrices comme argument de la fonction plot


Dans ce cas on obtient plusieurs courbes automatiquement pour chaque colonne (ou parfois les lignes) de la matrice. On a déjà présenté ce cas plus auparavant.

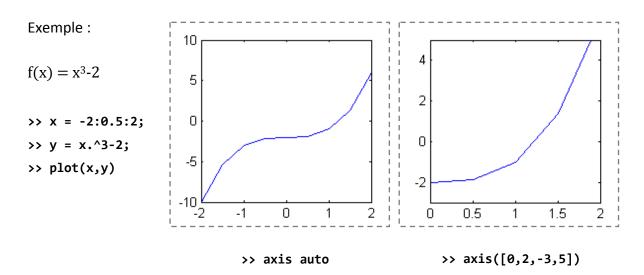
Après pouvoir parvenir à mettre plusieurs courbes dans la même figure, il est possible de les distinguer en mettant une légende indiquant les noms des ces courbes.

Pour cela, on utilise la fonction legend, comme illustre l'exemple suivant qui dessine les

courbes des deux fonctions sin(x) et cos(x):

```
>> x=0:pi/12:2*pi;
>> y1=sin(x);
>> y2=cos(x);
>> plot(x,y1,'b--',x,y2,'-r')
>> legend('le sinus','le cosinus')
```


Il est possible de déplacer la légende (qui se situe par défaut dans le coin supérieur droit) en utilisant la souris avec un glisser-déposer.


4.5. Manipulation des axes d'une figure

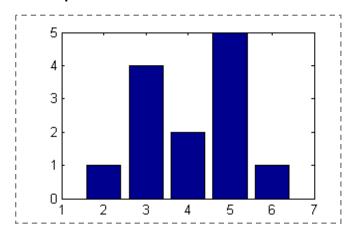
MATLAB calcule par défaut les limites (le minimum et le maximum) des axes X et Y et choisie automatiquement le partitionnement adéquat. Mais il est possible de contrôler l'aspect des axes via la commande axis.

Pour définir les limites des axes il est possible d'utiliser cette commande avec la syntaxe suivante :

Avec : xmin et xmax définissent le minimum et le maximum pour l'axe des abscisses. ymin et ymax définissent le minimum et le maximum pour l'axe des ordonnées.

Pour revenir au mode d'affichage par défaut, nous écrivons la commande : axis auto

Parmi les autres options de la commande axis, nous présentons les suivantes :


- Pour rendre la taille des deux axes identique (la taille et non le partitionnement, nous utilisons la commande **axis square**. Elle est nommée ainsi car elle rend l'aspect des axes tel un carré.
- Pour rendre le partitionnement des deux axes identique nous utilisons la commande axis equal.
- Pour revenir à l'affichage par défaut et annuler les modifications nous utilisons la commande axis auto.
- Pour rendre les axes invisibles nous utilisons la commande **axis off**. Pour les rendre visibles à nouveau nous utilisons la commande **axis on**.

4.6. D'autres types de graphiques

Le langage MATLAB ne permet pas uniquement l'affichage des points pour tracer des courbes, mais il offre aussi la possibilité de tracer des graphes à bâtons et des histogrammes. Pour tracer un graphe à bâtons nous utilisons la fonction **bar** qui a le même principe de fonctionnement que la fonction **plot**.

Exemple:

>> X=[2,3,5,4,6];
>> Y=[1,4,5,2,1];
>> bar(X,Y)

Il est possible de modifier l'apparence des bâtons, et il existe la fonction **barh** qui dessine les bâtons horizontalement, et la fonction **bar3** qui ajoute un effet 3D.

Parmi les fonctions de dessins très intéressantes non présentées (faute de place) on peut trouver : hist, stairs, stem, pie, pie3, ...etc. (que nous vous encourageons à les étudier).

Nous signalons aussi que MATLAB permet l'utilisation d'un système de coordonnées autre que le système cartésien comme le système de coordonnées polaire (pour plus de détail chercher les fonctions **compass**, **polar** et **rose**).

Avant d'aller plus loin, quelques conseils . . .

- 1. Commencer toute nouvelle page d'instructions Matlab par "clear all". Cette instruction détruit toutes les variables personnelles créées auparavant
- 2. Il faut se souvenir que Matlab distingue les majuscules et minuscules et qu'ainsi la matrice **A** et la matrice **a** ne sont pas identiques ! Les lettres accentuées sont interdites également.
- 3. Il ne faut **pas** donner des noms aux variables qui correspondent à des noms de fonctions (soit celles de Matlab, soit celles de l'utilisateur) : dans ce cas Matlab ne peut plus accéder à ces fonctions. C'est particulièrement vrai aussi pour les variables complexes i et j que l'on désactive complément quand l'on nomme une variable i ou j dans un boucle !
- 4. On tachera d'utiliser au maximum les **fichiers .m** (c.a.d. les scripts et les fonctions) ; l'idée est d'utiliser la page principale de Matlab comme une feuille de papier brouillon et de réserver les calculs difficiles aux fichiers .m.
- 5. Il est primordial d'insérer des commentaires dans les fichiers .m, et ce *au fur et à mesure de la programmation* (et pas seulement lorsque la programmation est terminée).
- 6. De mème, toujours garder à l'esprit, lorsque l'on écrit des fonctions, la notion de variable locale. En général, une variable n'existe que dans un certain contexte.
- 7. Enfin, il faut vectoriser le plus possible les opérations et éviter les boucles, et **ceci est aussi fondamental!** puisque Matlab est un langage interprété. Il est souvent plus simple de tout écrire sous forme de boucles ; si cela n'est pas un problème pour des petites opérations, un gain de temps *très considérable* est obtenu en vectorisant les calculs. Le petit exemple suivant est très instructif ; pour trouver la différence maximale entre le vecteur x et le vecteur y définis par

```
>> x=rand(1,100000);y=rand(1,100000);
on vérifiera que
>> maxdif=max(x-y);
donne un résultat immédiatement tandis que
>> for i=1:100000;dif(i)=x(i)-y(i); end; maxdif=max(dif);
est déjà beaucoup plus lent!
```