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Abstract

In this short text, we will introduce, based on the calculus and the
laws of motion in classical mechanics, a strong mathematical deriva-
tion of Kepler’s famous astronomical laws.

We refer by M to the Sun’s mass, and let us imagine that there is an
inertial physical observer, using a clock to measure time and an orthonormal
basis to determine the spatial locations of the various celestial bodies from the
center of the sun. The presence of inertial observers is one of the fundamental
postulates of classical mechanics.

For this observer, the path of motion of a planet with a mass m around
the sun is represented by a parameterized curve v : [0, 7| — R3, which verifies
the following differential equation called the Newton’s equation:

miy (t) = F (¢, (t),7 (1)), (1)

where F indicates the sum of the forces acting on the planet. We will assume
here that the force field F' is centripetal; that is, F' hase the mathematical
formula

F(I‘) - _f (I‘) r,r= (I,y,Z) € R3 - {(07070)}7

with f € C* (R?* — {(0,0,0)};R).
The angular momentum of the planet is

J(@)=~()x¥(),tel0,T].

Lemma 0.1 The angular momentum J is constant.



Proof. Indeed, for each ¢t € [0, 7T, we have

J() = 7@ x 3@ +70) x5 1) =0+ ) x (=f(v(1) 7 (1)
—f(y @)y () x v () =0.

So J is constant in [0, 7. =

Based on this lemma and the properties of the vector product in R3,
we conclude that the planet moves in the plane passing through the origin
(0,0,0) € R® (which physically represents the center of the sun) and orthog-
onal to the angular momentum vector J. So, we get the important physical
reality: the movement of the planet is a flat movement.

On the other hand, we can choose new coordinates of space R? so that
the Cartesian equation of the plane at which the planet moves becomes the
equation z = 0 and that the angular momentum vector J becomes as follows
J =1(0,0,7) with j € R. In this case, for t € [0,T[, we write

7 ()= (x(t),y(t),0) = (r(t)cosb (1), 7 (t)sin b (t),0),

where 7 () = ||y (t)|, = \/(a: (t))* + (y (t))* is the Euclidean norm of the

vector 7 (t). The derivative @ (t) is called the angular velocity of the planet
at the moment ¢.

Fort € [0,T[, we put Z (t) = x (t) +iy (t) =r (t)exp (if (t)) € C, and we
denote by Im (Z) the imaginary part of the complex number Z € C.

Lemma 0.2 For each t € [0,T[, j = (r(t))* 8 (t) > 0.
Proof. Let ¢t € [0,7]. We have

J(t) = (0,0,5) =~ () x7 () = (x(t),y(t),0) x (&(t),y(t),0)
0,0,z )y (t) =2 )y (t)).

~— Im [r () exp (=i (t)) {7 (£) exp (10 (1)) + ir (£) § (¢) exp (i0 (t))}]
= Im |r ()7 (1) +i(r ()"0 (1)),
and thus j = (r (¢£))>0(¢). =

Hence, the quantity j = (r (t))* 0 (¢) is constant and does not change with
time.



The flat region swept by the vector extending from the center of the sun
to the center of the planet between moments #; and ¢, can be mathematically
represented as follows:

R (t1,t2) = {(x,y,0) = (rcosf (t),rsind(t),0) : t; <t <t,0<r <r(t)}.
Let’s denote by Area (t1,t2) to the area of this region.

Lemma 0.3 For all (t;,t5) € R? with 0 < t; <ty < T, we have

Area (tl, tz) = % (tg — tl) .
Proof. Let (t1,t5) € R? with 0 < t; <ty < T. According to the integration
and the measure theory, this area is calculated as follows:

Area (ty,t5) = / dxdy :/ det < O O )‘dtdr
R(t1,t2) t1 <t<t2,0<r<r(t)

8ty ary
—rf (t)sinf (t) cosb (t) )'

= det - ) dtdr

/tlgtsm,oyg(t) < 0 (t)cos O (t) sinf ()

to . T‘(t) 1 to .
= / 0 () / rdr | dt = —/ (r (t))* 0 (t) dt
t1 0 2 t1

1 t2 ‘ ,] to j
= §/tl jdt_ﬁ/tl dt—§(t2—t1).

This is the relationship to be reached. m

From Lemma 0.3, we extract an ancient and very famous astronomical
law called the Kepler’s second law: the flat region R (t1,1,) is swept
out at a constant rate j |2 by the vector extending from the center
of the sun to the center of the planet.

Kepler wrote this law in 1602 and published it in 1606. In fact, Kepler
formulated three famous astronomical laws, which were the result of direct
observations to the sky for very long periods extending to an ancient history.
In a later period, Newton could verify, on the paper only, the validity of these
laws, using the calculus, laws of motion in classical mechanics and the general
law of gravitation. This incredible scientific success that Newton achieved
that made him very famous in the world, just as it made him one of the
greatest scientists in earth.

Now we specify the force field F'. According to the Newton’s law of
gravity the sun acts on a planet of mass m at the point r = (z,y,2) €
R3 — {(0,0,0)} by the force

F () = =GMm-— = —grad U (r) = = (.U (r) .9,U (x) ,0.U (x),



where G = (6.67428 + 0.00067) x 107! is the gravitational constant, r =
|rll, = /2% + y% + 22 is the Euclidean norm of the vector r and U is the
gravitational potential defined by

U(r)=-G

r

In this case, the equation of motion of the planet (1) becomes in the following

form
oy — e @)
(t) = —-GM T (t))?’. (2)

From here, we can easily see that the motion of the planet around the
sun depends only on the initial position « (0) and the initial velocity
7 (0), and it does not depend on its mass m.

The three energies of the planet are the kinetic energy Fj, the potential
energy E, and the total energy E, which are defined as follows

B (t) = %m 15 (Dll5, By (8) = U (v(1)), E(t) = Exc (t) + By (1) .t € [0, TT.

Lemma 0.4 The total energy E of the planet is constant along its orbit.



