SÉRIE Nº 03

EXERCICE 01

Parmi les liaisons indiquées, laquelle absorbe à un $\bar{\nu}$ plus élevé dans un spectre IR ?

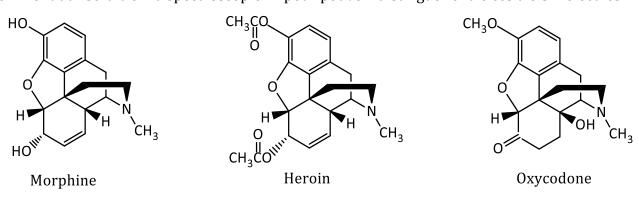
a.
$$(CH_3)_2C=O$$
 ou $(CH_3)_2CH-OH$ **b.** $(CH_3)_2C=NCH_3$ ou $(CH_3)_2CH-NHCH_3$ **c.** \uparrow

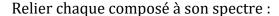
EXERCICE 02

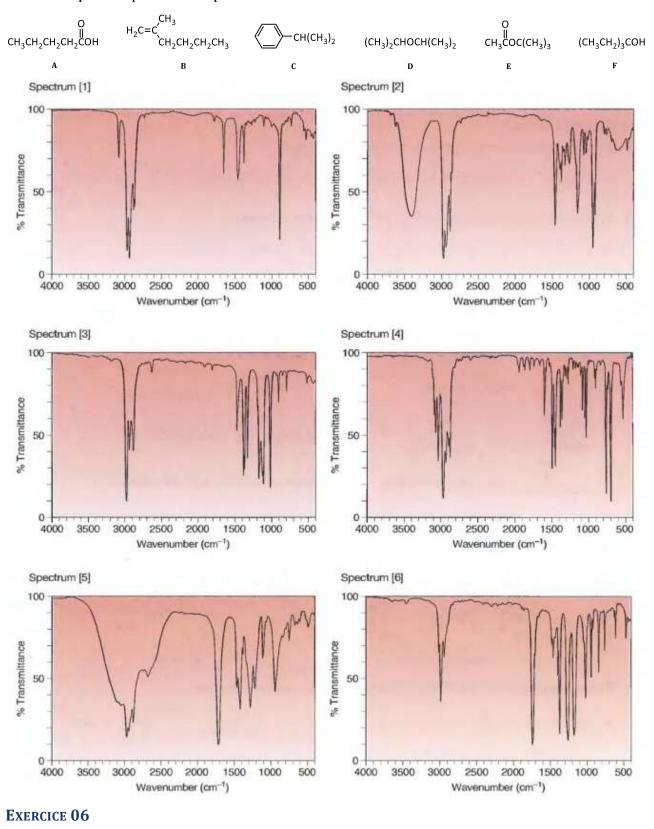
Quelles sont les bandes caractéristiques dans le spectre IR de chacune des molécules suivantes:

EXERCICE 03

Comment diffèrent les spectres IR de chaque paire de molécules suivantes :


$$\begin{array}{c|cccc} \text{OCH}_3 & & \text{O} \\ \text{OCH}_3 & \text{et} & \text{CH}_3\text{(CH}_2\text{)}_5\text{COCH}_3 \end{array}$$


$$O$$
 \parallel
 $CH_3CH_2CCH_3$
 et
 $CH_3CH=CHCH_2OH$


$$HC \equiv CCH_2N(CH_2CH_3)_2$$
 et $CH_3(CH_2)_5C \equiv N$

EXERCICE 04

Comment utiliserait-on la spectroscopie IR pour pouvoir distinguer entre ces trois molécules?

Présenter les structures des sept composés ayant comme formule brute: C₃H₆O. Citer les bandes d'absorption majeures que l'on retrouve dans le spectre IR de chacune de ces molécules.