Faculté des sciences exactes et informatique

A. U : 2019/2020 L1 : 1^{ère} Année SM UEF : F112 (PHYS II)

TD N°1 : La charge électrique

Fiche TD N°1 CORRECTION

Exercice N°1 Solution:

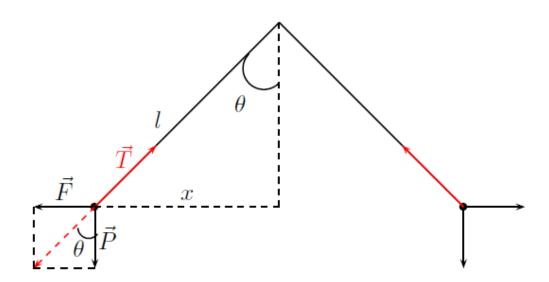
Département des Sciences de la matière

Données: m = 3 g, Z = 29 et A = 63.546. Nombre d'Avogadro, $N = 6.023 \times 10^{23}$.

- 1. Le nombre de moles est, $n_{moles} = \frac{m}{A} (m \text{ en g et non en kg}).$
- 2. Le nombre d'atomes est, $n_A = n_{mole\ s} \times N = \frac{m\ N}{A} = 2.8435 \times 10^{22}$.
- 3. Le nombre d'électrons est, $n_Z = Z n_A = \frac{Z m N}{A} = 8.246 \times 10^{23}$.
- 2. $Q=+5\times 10^{-9}C$ et $e=1.6\times 10^{-19}C$. Le nombre d'électrons perdus est, $n_e=\frac{Q}{e}=3.12\times 10^{+10} \; , \; {\rm Donc}: \; n_e/n_A \; \sim \; 10^{-13}.$

Exercice N°2 Solution:

Données: $l = 0.8 \, m, K = 9 \times 10^9 \, C^{-2} m^3 kg. \, s^{-2}, m = 10^{-2} kg, g = 10 m/s^2$

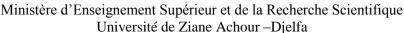


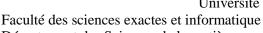
1. Comme les sphères sont identiques, elles porteront la même charge après le contact :

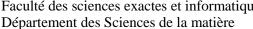
$$q_1' = q_2' = \frac{(q_1' + q_2')}{2}.$$

Système électriquement isolé \Rightarrow conservation de la charge : $q_1 + q_2 = q_1^{'} + q_2^{'}$,

Donc $q_1' = q_2' = \frac{(q_1 + q_2)}{2}$. Le tableau suivant résume les résultats (en C):







TD N°1: La charge électrique

Cas	q_1	q_2	$q_1 + q_2$	$q_1' = q_2'$
a	4×10^{-8}	0	4×10^{-8}	2×10^{-8}
b	3×10^{-8}	8×10^{-8}	11×10^{-8}	5.5×10^{-8}
С	3×10^{-8}	-8×10^{-8}	-5×10^{-8}	-2.5×10^{-8}

2. Les deux sphères portent la même charge et se repoussent donc par une force :

$$F = K \frac{q_1' \ q_2'}{(2x)^2} = K \frac{{q_1'}^2}{(2x)^2}$$

Géométrie : $\frac{x}{l} = \sin \theta$. La RFD $\vec{P} + \vec{F} + \vec{T} = \vec{0}$ donne, $\frac{F}{P} = \tan \theta$. L'angle étant petit, alors $\sin \theta = \tan \theta \text{ d'où } \frac{x}{l} = K \frac{q_1'^2}{m g (2x)^2} \Rightarrow x = (K \frac{l q_1'^2}{4 m g})^{\frac{3}{2}}$

AN. Cas a : x = 1.93 cm. Cas b : x = 3.79cm. Cas c : x = 2.24cm

Exercice N°3 Solution:

Données : F = 0.108 N, d = 0.5 m, F' = 0.036 N.

Soient q_1 et q_2 les charges initiales des deux sphères. La force est $F = -K \frac{q_1 q_2}{d^2}$

($Car q_1 q_2 < 0$). Le fil conducteur permet le déplacement des charges d'une sphère à l'autre pour avoir la même charge : (Conservation de la charge et sphères identiques)

$$q' = \frac{q_1 + q_2}{2}$$

La force après avoir enlevé le fil est $F' = K \frac{q^{'2}}{d^2} = K \frac{(q_1 + q_2)^2}{4 d^2}$. On a donc un système de deux équations du second degré :

Ministère d'Enseignement Supérieur et de la Recherche Scientifique Université de Ziane Achour –Djelfa

Faculté des sciences exactes et informatique Département des Sciences de la matière

A. U : 2019/2020 L1 : 1^{ère} Année SM UEF : F112 (PHYS II)

TD N°1: La charge électrique

$$\begin{cases} q_1 q_2 = -\frac{F d^2}{K} \\ (q_1 + q_2)^2 = \frac{4 F' d^2}{K} \end{cases} \Rightarrow \begin{cases} q_1 q_2 = -3 \times 10^{-12} \\ q_1 + q_2 = \pm 2 \times 10^{-6} \end{cases}$$

La solution dépend du signe (\pm) de q_1+q_2 . Pour le signe (-), on aura $(q_1=-3.0\times 10^{-6}C)$, $q_2=1.0\times 10^{-6}C)$,

ou l'inverse $(q_1 = 1.0 \times 10^{-6} C, q_2 = -3.0 \times 10^{-6} C)$.

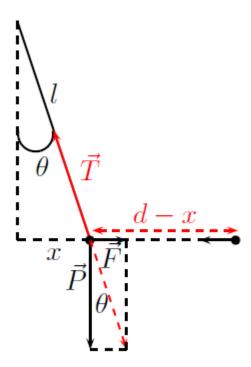
Pour le signe (+), on aura ($q_1=-1.0\times 10^{-6}$ C, $q_2=3.0\times 10^{-6}$ C), ou l'inverse :

$$(q_1 = 3.0 \times 10^{-6}C, q_2 = -1.0 \times 10^{-6}C).$$

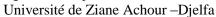
On a quatre solutions parce qu'on peut permuter les charges q1 et q2, ainsi que leurs signes, sans changer ni F ni F'.

Exercice N°4 Solution:

Données : $l = 10^{-1} m, m = 10^{-2} kg, Q_1 = 2 \times 10^{-8} C, d = 4 \times 10^{-2} m,$ $Q_2 = -5 \times 10^{-8} C.$



Ministère d'Enseignement Supérieur et de la Recherche Scientifique



Faculté des sciences exactes et informatique Département des Sciences de la matière

A. U: 2019/2020 L1: 1 ere Année SM UEF: F112 (PHYS II)

TD N°1 : La charge électrique

1. Les forces électriques sont attractives. L'approximation du petit angle, permet d'écrire (voir exercice précédent) :
$$\frac{x}{l} = sin\theta = tan\theta = \frac{F}{mg}$$
 où $F = -K \frac{Q_1 Q_2}{(d-x)^2}$ (en module).

2. Donc:
$$\frac{x}{l} = K \frac{Q_1 Q_2}{m g (d-x)^2} \Rightarrow (d-x)^2 = -K l \frac{Q_1 Q_2}{m g} \frac{1}{x} \Rightarrow x^3 - 2d x^2 + d^2 x + K l \frac{Q_1 Q_2}{m g} = 0$$

3. D'où,
$$x^3 - 8 \times 10^{-2} x^2 + 16 \times 10^{-4} x - 9 \times 10^{-6} = 0$$

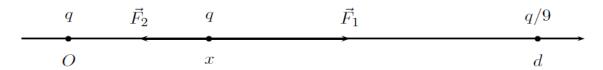
L'équation se simplifie en posant $x = y \times 10^{-2}$ (on travaille en cm). On obtient : $y^3 - 8y^2 + 16y - 9 = 0$. On remarque que y = 1 est une solution 1. L'équation devient alors: $(y-1)(y^2-7y+9) = 0$. Les deux solutions, qui restent, sont celles de $(y^2 - 7y + 9) = 0$. On trouve $y = \frac{7 \pm \sqrt{13}}{2}$.

A ces trois solutions correspondent x = 1 cm, x = 1.7 cm ou x = 5.30 cm. On constate que la dernière solution correspond à x > d ce qui contredit l'hypothèse de l'exercice 2. De plus, $\theta = \arcsin \frac{x}{l} = \arcsin 0.53 \simeq 32^{\circ}$ ce qui ne vérifie pas à l'approximation $\sin \theta \simeq \theta$. Les deux premières solutions sont acceptables et correspondent à des θ différents tout en vérifiant l'approximation $\sin \theta \simeq \theta$. On choisit x = 1cm car elle correspond à la meilleure approximation ($\theta = arcsin(0.1) = 5.7^{\circ}$ est le plus petit).

4.

$$F = -K \frac{Q_1 Q_2}{(d-x)^2} = \frac{x}{l} m g = 10^{-2} N.$$

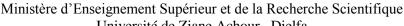
Exercice N°5 Solution:



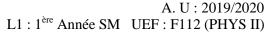
1. En valeurs algébriques :

$$F_1 = K \frac{q^2}{x^2} \quad \text{et} \quad F_1 = -K \frac{q^2}{9(d-x)^2} \Rightarrow$$

$$F = K \frac{q^2}{x^2} - K \frac{q^2}{9(d-x)^2} = K q^2 \frac{9(d-x)^2 - x^2}{9x^2(d-x)^2} = K q^2 \frac{(3d-2x)(3d-4x)}{9x^2(d-x)^2}$$



Faculté des sciences exactes et informatique Département des Sciences de la matière



TD N°1: La charge électrique

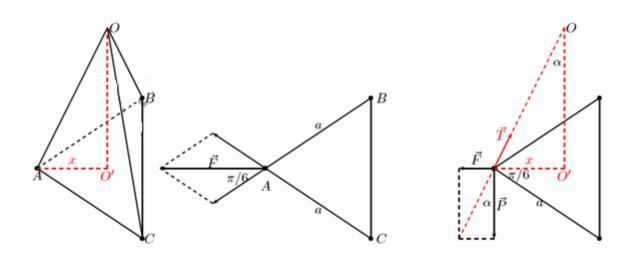
2. Équilibre :
$$F = 0$$
, $(3d - 2x)(3d - 4x) = 0$. Alors $x = \frac{3d}{4}cm$, (l'autre solution $x = \frac{3d}{4}$ est inacceptable car elle correspond à $x > 0$).

Exercice N°6 Solution:

Données: $m = 10^{-2} kg$, l = 1m, a = 0.1 m.

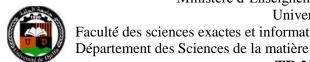
Résultante des forces électriques sur l'une des charges $F = 2K\frac{q^2}{a^2}\cos(\frac{\pi}{6})$, Le point O est au dessus du centre O' du triangle situé à $x = \frac{2}{3} a \cos \frac{\pi}{6}$, L'angle α étant petit, on a $\sin \alpha =$

$$\tan \alpha \Rightarrow \frac{x}{l} = \frac{F}{m \text{ g}} \Rightarrow \frac{2 \text{ a}}{3 l} \cos \left(\frac{\pi}{6}\right) = \frac{2 \text{ K } q^2}{m \text{ g } a^2} \cos \left(\frac{\pi}{6}\right). \text{ Donc } q = \sqrt{\frac{m \text{ g } a^3}{3 \text{ K } l}} = 6 \times 10^{-8} \text{ C}$$



Exercice N°7 Solution:

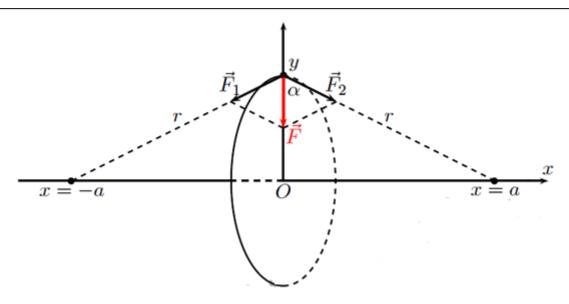
Soient O le milieu de [x = -a, x = +a] et y la position de la troisième charge Q (par exemple, de signe opposé à q).



Faculté des sciences exactes et informatique

A. U: 2019/2020 L1: 1ère Année SM UEF: F112 (PHYS II)

TD N°1 : La charge électrique



A cause de la symétrie, on a $F_1 = F_2 = K \frac{qQ}{r^2}$, La force résultante exercée sur Q est parallèle à y'Oy. Par conséquent, $F=2K\frac{qQ}{r^2}\cos\alpha$, où $r^2=y^2+a^2$ et $\cos\alpha=\frac{y}{r}=\frac{y}{(y^2+a^2)^{1/2}}$ Donc, $F = 2K \frac{qQy}{(y^2+a^2)^{3/2}}$, Si l'on place Q sur n'importe quel autre point du cercle perpendiculaire à x'Ox, de centre O et de rayon R = y, on aura une force de même module est dirigée vers O.

Le maximum de F se détermine par $\frac{dF}{dy} = 0$, Ce qui donne $-2KQq \frac{(2y^2 - a^2)}{(y^2 + a^2)^{5/2}} = 0$, $y = -a\sqrt{2}$ et $y = a\sqrt{2}$. On obtient un cercle de rayon $R = a/\sqrt{2}$ et un maximum $F = 2K \frac{qQa}{\sqrt{2}(\frac{a^2}{2} + a^2)^{3/2}} = \frac{4}{9}\sqrt{3}K \frac{Qq}{a^2}$