Faculté des Sciences et de la Technologie Département de Génie Electrique 3eme Année LMD

Série d'exercices sur les redresseurs commandés

Exercice n°1

Le redresseur monophasé mono alternance présenté sur la figure1; alimente une charge résistive par une source sinusoïdale Vs=120V/50Hz, R=10Ω.

- 1) Tracer les allures V_{ch} , i_{ch} et V_{D} .
- 2) Calculer la valeur moyenne et efficace de la tension de la charge.
- 3) Calculer le rendementµ et les facteurs de forme FFet d'ondulation RF.

Exercice n°2

Le redresseur monophasé en pont présenté sur la figure2; alimente une charge résistive par une source sinusoïdale Vs=120V/50Hz, R=10Ω.

- 1) Tracer les allures V_{ch} , i_{ch} et V_{D1} .
- 2) Calculer la valeur moyenne et efficace de la tension de la charge.
- 3) Calculer le rendementµ et les facteurs de forme FFet d'ondulation RF.

Exercice n°3

Le redresseur monophasé présenté sur la figure3; alimente une charge inductive par une source sinusoïdale Vs=120V/50Hz, Z= $(10+j10)\Omega$.

- 1) Tracer les allures V_{ch} , i_{ch} et V_{D} .
- 2) Déterminer l'expression mathématique du courant de la charge.
- 3) Calculer la valeur moyenne de la tension de la charge.
- 4) On insère une diode de roue libre en antiparallèle avec la charge
 - Tracer les allures V_{ch} , i_{ch} et V_{D} .
 - Quel est le rôle de la diode de roue libre.

Exercice n°4

Le redresseur monophasé non commandé présenté sur la figure4; alimente une charge R-E par une source sinusoïdale Vs= $200\sin 314t(V)$, R= 20Ω et E=100V.

- 1) Tracer les allures V_{ch} , i_{ch} et V_{D} .
- 2) Calculer la valeur moyenne de la tension de la charge.
- 3) Calculer la valeur efficace du courant de la charge.
- 4) Calculer la puissance dissipée dans la résistance.

Exercice n°5

Le redresseur double alternance non commandé présenté sur la figure5; alimente une charge inductive R= 8Ω et L=8mH. Vs₁= -V_{S2}=200sin314t(V).

- 1) Tracer les allures V_{ch} , V_{D1} , i_{ch} et i_{D1} .
- 2) Calculer la valeur moyenne de la tension de la charge.
- 3) Déterminer l'expression mathématique du courant de la charge.

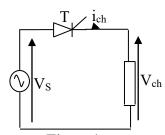


Figure1

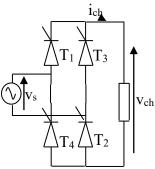


Figure2

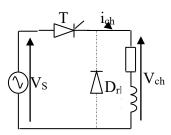


Figure3

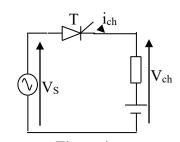
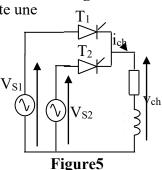



Figure4

Exercice n°6

Le redresseur double alternance non commandé présenté sur la figure6; alimente une charge R-E, $R=10\Omega$ et E=50V. $V_{S1}=-V_{S2}=100\sin 314t(V)$.

- 1) Tracer les allures V_{ch}, V_{D1}, i_{ch} et i_{D1}.
- 2) Calculer la valeur moyenne de la tension de la charge.
- 3) Calculer la valeur efficace du courant de la charge.

Exercice n°7

Le redresseur monophasé en pont non commandé présenté sur la figure7; alimente une charge inductive $R=8\Omega$ et L=8mH. Vs=200sin314t(V).

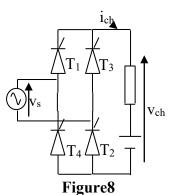
- 1) Tracer les allures V_{ch} , V_{D1} , i_{ch} et i_{D1} .
- 2) Calculer la valeur moyenne de la tension de la charge.
- 3) Déterminer l'expression mathématique du courant de la charge.

On charge une batterie E=24V par le redresseur monophasé en pont non commandéprésenté sur la figure8; Vs=120V/50Hz et $R=10\Omega$.

- 1) Tracer les allures V_{ch} , V_{D1} et i_{ch} .
- 2) Calculer la valeur moyenne de la tension de la charge.
- 3) Calculer la valeur moyenne du courant de la charge.

$\begin{array}{c|c} & & & & & & \\ \hline & & & & \\ \hline & & & & \\$

Exercice n°9


Le redresseur triphasé non commandé présenté sur la figure9; alimente une charge inductive $R=8\Omega$ et L=10mH. $Vs_1=200sin314t(V)$.

- 1) Tracer les allures V_{ch} , V_{D1} , i_{ch} , i_{D1} , i_{D2} et i_{D3} .
- 2) Calculer la valeur moyenne de la tension de la charge.
- 3) Déterminer l'expression mathématique du courant de la charge.

Exercice n°10

Le redresseur triphasé non commandé présenté sur la figure 10; alimente une charge R-E. $R=20\Omega$, E=100V et $Vs_1=200sin 314t(V)$.

- 1) Tracer les allures V_{ch} , V_{D1} , i_{ch} , i_{D1} , i_{D2} et i_{D3} .
- 2) Calculer la valeur moyenne de la tension de la charge.
- 3) Calculer la valeur efficace du courant de la charge.
- 4) Calculer la puissance dissipée dans la résistance.

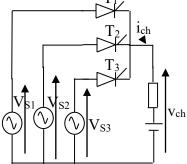
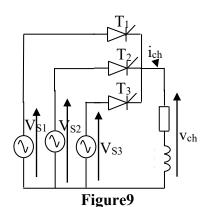



Figure10

 V_{S1} V_{S2} V_{CP}

Figure6