UNIVERSITE ZIANE ACHOUR DJELFA

1 ère année MI

Module: Structure Machine

Solutions de la 1^{éré} Serie d'exercices

Exercice 1 :: donner la valeur décimale du nombre binaire N=1010

Solution:

$$= 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 = 8 + 0 + 2 + 0 = 10_{(10)}$$

Exercice 02: convertir le nombre N=75(10) en nombre Octal.

Solution

On aura successivement:

$$75 - 64 \longrightarrow 1 \times 8^{2}$$

$$11 - 8 \longrightarrow 1 \times 8^{1}$$

$$3 \longrightarrow 3 \times 8^{0}$$

Donc N= $75_{(10)}$ = 1 x 8² + 1 x 8¹ + 3 x 8⁰

On a donc : $N=75_{(10)}=113_{(8)}$

i	8 ⁱ
0	1
1	8
2	64

Exercice 03: convertir Nf=0,1011₍₂₎ en décimal.

Solution: nous obtenons:

$$Nf=1x2^{-1}+0x2^{-2}+1x2^{-3}+1x2^{-4}=0.5+0.125+0.0625=0.6875_{(10)}$$

Exercice 04 : convertir Nf=0,85₍₁₀₎ en binaire, prendre 04 chiffres après la virgule.

Solution: nous obtenons:

$$0.85 \times 2 = 1,70$$

$$0.70 \times 2 = 1.4$$

$$0.4 \times 2 = 0.8$$

$$0.8 \times 2 = 1.6$$

On écrit de gauche à droite les nombres encadrés pris de haut en bas.

On aura donc $Nf=0.85_{(10)}=0.1101_{(2)}$

Exercice 05:

Convertir le nombre binaire N=11010101,11(2) en Octal.

Solution:

Convertir le nombre octal $N=657,12_{(8)}$ en binaire.

Solution:

Ecrire par blocs de trois bits, la valeur binaire des chiffres du nombre octal. On obtient :

Convertir le nombre binaire N=11010101101,001(2) en Octal.

Solution:

$$N=$$
0110 1010 1101, 0010 $_{(2)}$
6 A D , 6 $_{(16)}$

Convertir le nombre Hexadécimal N=AB0,C1₍₁₆₎ en binaire.

Solution

Ecrire par blocs de quatre bits, la valeur binaire des chiffres du nombre hexadécimal. On obtient :

Exercice 06:

Peut-on représenter le nombre -8 sur 04 bits en SVA (signe et valeur absolue)?

Réponse :

Il est impossible de représenter le chiffre -8 sur 4 bits car sa valeur absolue $|-8_{(10)}|$ qui est égale à $1000_{(2)}$ prends déjà 04 bits et donc on aura besoin au minimum de 5 bits pour pouvoir représenter son bit de signe.

Quels sont les nombres qu'on peut représenter sur 04 bits ?

Solution: d'après le tableau 5, on peut représenter sur 4 bits, l'intervalle de nombres entiers : De $[-(2^3 - 1), (2^3 - 1)]$ soit de [-7, +7].

Exercice 07:

Quelle est la valeur décimale du nombre binaire 10110110 représenté en complément à 1?

Solution:

Le bit de poids fort indique qu'il s'agit d'un nombre négatif. Donc la Valeur décimale $-CP1(10110110) = -(01001001)_2 = -(73)_{10}$

Quels sont les nombres en complément à 1 qu'on peut représenter sur 04 bits ?

Solution:

- \triangleright Le plus grand nombre positif représentable est donc 0111 ce qui représente $2^3 1$ soit +7
- \triangleright Le plus petit négatif est -0111. Ce qui donne $(2^3 -1)$ soit -7

Donc, on constate que sur 04 bits, on peut représenter les nombres qui sont dans l'intervalle $[-7_{(10)}, +7_{(10)}]$, soit $[-(2^3 - 1), +(2^3 - 1)]$

Plus généralement, si on travaille sur n bits, l'intervalle des valeurs qu'on peut représenter en CP1 est : $[-(2^{n-1}-1), +(2^{n-1}-1)]$.

Exercice 08:

Quelle est la valeur décimale correspondante au nombre binaire 10110110 représenté en complément à 1?

Quels sont les nombres en complément à 1 qu'on peut représenter sur 04 bits?

Solution:

Le bit de poids fort indique qu'il s'agit d'un nombre négatif. Donc la Valeur décimale = - CP1(10110110) = - (01001010)2= - (74)10

Quels sont les nombres qu'on peut représenter sur 04 bits ?

Solution:

Donc, d'après le tableau 7, on constate que sur 04 bits, on peut représenter les nombres qui sont dans l'intervalle $[-8_{(10)}, +7_{(10)}]$, soit $[-2^3, +(2^3-1)]$

Plus généralement, si on travaille sur n bits, l'intervalle des valeurs qu'on peut représenter en CP2 est : $[-(2^{n-1}), +(2^{n-1}-1)]$.

Exercice 09:

Effecteur en C1 les opérations suivantes.

• Sur 5 bits, l'opération: 8-9.

• Sur 5 bits, l'opération: -8 + -9

Solution: s nombres doivent être sur 5 bits y compris le bit de signe

$$(+8) = 01000_{(2)}$$

$$(+9) = 01001_{(2)}$$

Le complément à 1 de 01001 est $10110 = -9_{(10)}$

Le bit du signe =1 → résultat négatif → le résultat = - Cp1(11110). Dans ce cas, calculons le complément à 1 du résultat

Cp1(11110)=00001₍₂₎. Cela veux dire que le résultat = $-1_{(2)}$

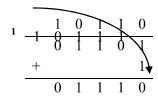
Sur 8 bits effectuons l'opération : (-8) + (-9)

Solution:

Dans ce cas chaque nombre est représenté par son complément à 1 :

$$(+8) = 01000$$
, $(-8) = cp1(01000) = 10111$

$$(+9) = 01001, (-9) = cp1(01001) = 10110$$



Exercices 10:

Effecter la même opération en complément à 2. (+8) - (+9).

Solution:

Les nombres doivent être sur 5 bits y compris le bit de signe

$$(+8) = 01000_{(2)}$$

$$(+9) = 01001_{(2)}$$

Le complément à 1 de 01001 est $10110 = -9_{(10)}$

Le bit du signe =1 \rightarrow résultat négatif \rightarrow le résultat = - Cp1(11110).

Dans ce cas, calculons le complément à 1 du résultat

 $Cp1(11110)=00001_{(2)}$. Cela veux dire que le résultat = $-1_{(2)}$

Exercices 11:

- 1. Représenter le nombre réel (-6.125) en format virgule fixe (1 bit de signe, 8 bit pour la part entière et 7 bits pour la partie fractionnaire).
- 2. Quelle est le plus petit nombre positif représentable dans ce forma
- 3. Quelle est le plus grand nombre positif représentable dans le même form

Solution:

- 1. Il faut d'abord convertir le nombre en binaire pour pouvoir le représenter en machine. On a : $-6.125_{(10)}$ = $110,001_{(2)}$.On représente donc le nombre selon le format indiqué. On obtient donc : 1|00000110|0010000
- 2. le plus petit nombre positif est représenté comme suit : 0|00000000|0000001 ce qui donne la valeur Nmin=2⁻⁷
- 3. le plus grand nombre positif est représenté comme suit : 0|11111111|1111111

Pour donner l'équivalent en décimale, calculons la partie entière max (PEmax) et la partie fractionnaire max (PFmax).

PEmax=
$$2^{0}+2^{1}+...+2^{7}=2^{8}-1$$

PFmax = $2^{-1}+2^{-2}+...+2^{-7}=1-2^{-7}$
Nmax=PE max=+PF max= $2^{8}-1+1-2^{-7}=2^{8}-2^{-7}$

Exercices 12:

RRépresenter par la méthode de l'exposant réel :

$$1-N=-1010,10$$
 (2)

$$2-N=-0.0010$$
 (2)

Solution:

1-:

On commence par normaliser la mantisse :

N= - $1010,1001_{(2)}$ =-0. $10101001_{(2)}$ x 2^{+4} . (+4 représente le nombre de déplacement de la virgule vers la gauche).

Dans ce cas : $M = -0.10101001_{(2)}$ et $Exp = +4_{(10)} = 0100_{(2)}$

	1	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	0
Ī	Signe			хр						N	lan	tisse	Э				

2-:

On commence par normaliser la mantisse :

N= - $0.001001_{(2)}^{-}$ =- $0.1001_{(2)}$ x 2^{-2} . (-2 représente le nombre de déplacement de la virgule vers la droite).

Dans ce cas : $M=-0.1001_{(2)}$ et Exp=-2₍₁₀₎

En virgule flottante, les exposants négatifs sont représentés par la méthode du complément à 2

$$|Exp| = +2_{(10)} = 0100_{(2)}$$

 $Exp = -2 = CP2(0100) = 1100_{(2)}$

1	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0
Signe (1 bit)	Exp (4 bits)							M	Ianti	sse	(12	bit	s)			

Exercie 13 : Prenons le même exemple précédent.

Solution:

N= -
$$0.001001_{((2)}$$
 =- $0.1001_{(2)}$ x2⁻²
M=- $0.1001_{(2)}$ et Exp=-2₍₁₀₎

Calculons maintenant la valeur de l'exposant biaisé :

Exp_biaisé =-2 +
$$(2^4/2)$$
 =2 + 8 =10₍₁₀₎ =1010₍₂₎

Ce nombre est représenté comme suit dans le format suivant : 12 bits pour la mantisse, 4 bits pour l'exposant biaisé et 1 bit pour le signe de la mantisse.

1	1	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0
Signe (1 bit)	Exp	Exp_biaisé (4 bits)						N.	Ianti	sse	(12	bit	s)			

Exercice 14:

Soient les deux nombres suivants : N1=0,001101₍₂₎, N2=1, 101₍₂₎

Effectuer l'opération N1+N2 en format virgule flottante selon le format suivant : (12 bits pour la mantisse, 4 bits pour l'exposant et 1 bit pour le signe de la mantisse).

$$N1=0.001101(2)$$
 , $N2=1, 101(2)$

Représenter N1+N2 en format virgule flottante selon le format suivant : (12 bits pour la mantisse, 4 bits pour l'exposant et 1 bit pour le signe de la mantisse).

Solution

On normalise d'abord les mantisses pour cela :

$$N1=0,1101 *2^{-2}$$
 , $N2=0,1101 *2^{1}$
 $N1+N2=0,1101 *2^{-2} +0,1101 *2^{1}$
 $=0,0001101 *2^{1} +0,1101 *2^{1}$
 $=0,1110101 *2^{1}$

Dans ce cas, N1+N2 est représenté comme suit :

0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0	0
Signe(1 bit)	Exposant (4 bits)							M	ant	isse	(12	2 bit	ts)			