
Esurection de Servi d'Algèlie INE x c A tel que y = (gof) (x) Exercice NY = 9 [f(x)] On suppose que gof est injective Mora on note 3 = f (x) alors on a trouver Soient x, y = A tel que f(x) . f(2) and: A + B = C 3 E B tel que y = 3(3) on conclue que on veut démontres que x = y g est surjective. on a g(f(x)) = g(f(x)) [gost une applied on] . Ii f, g at h nont by ectives alors 30 f ret hog nont byjectives (c'at initial) puisque gof est injective allers or = y . In suppose que got et hog sont hydratice alone f ent injective . On suppose que yofert nurjective et on Japais la première question on thouse que Bef est injective => f injective rout démontrer que gert nurjective Sount y E C est ce que il exciste se B forfert murjective => g murjective gent lipete Shag evt injecture > g injective. tel que y=g(x) maque gof eit surjective alors il existe Thog est surjective => h surjective

. Poit y G B-puisque gest bijective alors	On conclut que $g(y_n) = g(y_2)$ (gesture application
JIZEC tel que Z=g(x). d'autre part.	donc $3_1 = 3_2$.
gof rest bijective alors I se! tel que	
3 = (80 f)(x) alors 30 f(x) = 3(2)	Alors h est injective donc heat bijective.
d'où $g(f(x)) = g(y) \xrightarrow{gertingective} f(x) = y$	Exercice Nº &
a an $d(t(x)) = d(g) \Longrightarrow t(x) = f$	$f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto f(x) = \frac{2x}{1 + x^2}$
alors frest typet surjective done bijection	$1+x^2$
	D I Variate NGIN
• Joient $3_1, 3_2 \in \mathbb{C}$ tels que $h(3_1) = h(3_2)$ et on vout prouver que $3_1 \stackrel{?}{=} 3_2$.	tel que y= 2x c,à,d
	2 . 0~ -0 .
On a g est bijective alors il existe	$y = 4 - 4y^{2} \qquad \frac{y}{\Delta} = \frac{1}{2} + \frac{1}{2}$
$y_1, y_2 \in B$ tels que $g(y_1) = 3_1, g(y_2) = 3_2$.	$\Delta = 4 - 49 \Delta - \frac{1}{2} + \frac{1}{2} - \frac{1}{2}$
$h(3_{1}) = h(3_{2}) < h(g(y_{1})) = h(g(y_{2}))$	quand y E J-a, -1[U J11+0[A<0
(=) hog((y) = hog(y). puisque hog est injective alors y = ye	donc yxzy-ex =0 m'admet pas de solutions
minder vod cer whecher war A' = de	E dans R alots pour y E]-r - 1 [U]1, + 0 [

m'admet pas des antécedents dans IR.	alors $y = -2$ m'ad met par desantécedonts
alors $f: IR \longrightarrow IR$ n'ent pas surjective.	dans IRV alors f m'est pas surjective.
• Sorient xiy ciR tel que $f(x) = f(x)$	ExerciceNô3
$C_i a: d \frac{ex}{1+x^e} = \frac{-ey}{1+y^2}$. alors	$\overline{(1) \iff (2)}$
$\frac{1+\chi^2}{2} = \frac{2y(1+\chi^2)}{2} (2\chi + 2\chi)^2 = \frac{2y+2y^2}{2y+2y^2}$ $\frac{1}{autre part on a}$ $\frac{\chi}{1+\chi^2} = \frac{-1}{2} (1+\chi^2) (2\chi + 2\chi)^2 = \frac{2y+2y^2}{2y+2y^2}$ $\frac{1}{autre part on a}$ $\frac{\chi}{1+\chi^2} = \frac{1}{2} (1+\chi^2) (1+\chi^2) (1+\chi^2) = \frac{1}{2} (1+\chi^2)$ $\frac{1}{2} (1+\chi^2) = -\frac{1}{2} (1+$	Soient A, B $\in X$, Soit $y \in f(A \cap B)$. c, $a, d y = f(c)$ at $c \in A \cap B$ i.e $c \in A et c \in B$ donc $y \in f(A) \cap f(B)$ donc $f(A \cap B) \subset f(A) \cap B^{A}$ Joit $y \in f(A) \cap f(B)$ c. $a, d y \in f(A) et y \in f(B)$ i.e. $y = f(G); a \in A$ et $y = f(G); b \in B$ mains fest imjective et $f(G) = f(G) = y$ alors $a = b$. donc $y \in f(A \cap B)$ alors $f(A) \cap f(B) \subset f(A \cap B)$

On a
$$f^{-1}(A) \subset f^{-1}(B)$$
 mous A ment pas
inclut dans B.
2/ peur démontur que
 $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B) \ell$ faut
démontur que
 $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B) \ell$ faut
démontur que
 $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B) \ell$ faut
démontur que
 $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B) \ell$ faut
démontur que
 $f^{-1}(A) \cap f^{-1}(B) \ell$ faut
 $f^{-1}(A) \cap f^{-$

a feat subjective call	· 30f N: 2 N 2 N (100)
Sature Jumi Egod esta que il	Joit x = NJ ; (30 \$ (x) = 3 (\$(m))
excipte x = int tel que y = f(n)	= 3(~,~)
y= f(x) (>> y= (2+2) 1	$= \frac{dx}{dt} \left(\cosh dx e^{d} \right)$
(=) ye" - e"+ 2	(Bollin) = 2 (par 1
<=>(y-1)ex = 2/	
(c) ex= 2/1	· tog mi = ni = ni x -> g(n) => f(am)
$\Rightarrow x = \frac{\partial}{\partial m} \left(\frac{x}{\frac{x}{y-1}} \right) ; \ y > 1$	teitx (N) (fog(~): f(g(~))
P A La riciar paul P-4	(fo3(a) = f (3(a))
to lijection réciproque f	Ar(x) si re pair; Ar(x) si x impair.
$\begin{array}{c} \label{eq:product} \end{tabular} \end$	(teo) we we ampound
	(fog)(a)= fox or x pair, for or x import.
Exercicello 6	(100) O M' X impar.
t: N -> N 3 N -> N x +> f(x) = 2x x +> f(t) xi x pain o ni x compte	. for text pass manyective car

Exercice 08

1.
$$f^{-1}(\{2\}) = \{3,4\}; f^{-1}(\{1,2\}) = \{2,3,4\}; f^{-1}(\{3\}) = \emptyset$$

2. $f^{-1}(\{1\}) = \{-1,1\}$
 $f^{-1}([1,2]) = \left[-\sqrt{2}, -1\right] \cup \left[1,\sqrt{2}\right]$

Exercice 09

1. Pour tout $y \in f(A \cup B)$, il existe $x \in A \cup B$ tel que y = f(x). Comme $x \in A$, $y = f(x) \in f(A)$, comme $x \in B$, $y = f(x) \in f(B)$ par conséquent $y = f(x) \in f(A) \cup f(B)$ Cela montre que $f(A \cup B) \subset f(A) \cup f(B)$ Pour tout $y \in f(A) \cup f(B)$, $y \in f(A)$ ou $y \in f(B)$ Si $y \in f(A)$ alors il existe $x \in A$ tel que y = f(x), mais $x \in A \subset A \cup B$ donc $y = f(x) \in f(A \cup B)$ Si $y \in f(B)$ alors il existe $x \in B$ tel que y = f(x), mais $x \in B \subset A \cup B$ donc $y = f(x) \in f(A \cup B)$ Cela montre que s tous les cas $y \in f(A \cup B)$ et que donc $f(A \cup B)$ Finalement $f(A \cup B) = f(A) \cup f(B)$

Exercice 09

 $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$

f(-1) = f(1) donc f n'est pas injective.

-4 n'a pas d'antécédent, car $f(x) = -4 \Leftrightarrow x^2 = -4$ n'a pas de solution dans \mathbb{R} . f n'est pas surjective. Une fonction est bijective si et seulement si elle est injective et surjective donc cette fonction n'est pas bijective.

$$f: \mathbb{R}^+ \to \mathbb{R}^+$$
$$x \mapsto x^2$$
$$f(x_1) = f(x_2) \Rightarrow x_1^2 = x_2^2 \Rightarrow \sqrt{x_1^2} = \sqrt{x_2^2} \Rightarrow |x_1| = |x_2| \Rightarrow x_1 = x_2$$

Car $x_1 \ge 0$ et $x_2 \ge 0$. *f* est injective.

Pour tout $y \in \mathbb{R}^*$, (celui de l'ensemble d'arrivée), il existe $x = \sqrt{y} \in \mathbb{R}^*$, (celui de l'ensemble de départ) tel que : y = f(x), en effet $f(x) = (\sqrt{y})^2 = y$ donc f est surjective. f est bijective.

$$f:[0,1] \to [0,2]$$

$$x \mapsto x^2$$

$$f(x_1) = f(x_2) \Rightarrow x_1^2 = x_2^2 \Rightarrow \sqrt{x_1^2} = \sqrt{x_2^2} \Rightarrow |x_1| = |x_2| \Rightarrow x_1 = x_2$$

Car $x_1 \ge 0$ et $x_2 \ge 0$. f est injective.

2 n'a pas d'antécédent, car $f(x) = 2 \Leftrightarrow x^2 = 2$ n'a pas de solution dans [0,1]. f n'est pas surjective. $g: \mathbb{R} \to \mathbb{R}$

$$x\mapsto x+x^3$$

g est une fonction dérivable, $g'(x) = 1 + 3x^2 > 0$ donc *g* est strictement croissante sur \mathbb{R} . La contraposée de $g(x_1) = g(x_2) \Rightarrow x_1 = x_2$ est $x_1 \neq x_2 \Rightarrow g(x_1) \neq g(x_2)$ Supposons que $x_1 \neq x_2$, alors $x_1 < x_2$ (ou $x_2 < x_1$, ce que revient au même), on en déduit que $g(x_1) < g(x_2)$ car *g* est strictement croissante, par conséquent $g(x_1) \neq g(x_2)$, *g* est injective.

$$\lim_{x \to -\infty} g(x) = -\infty \quad \text{et} \quad \lim_{x \to +\infty} g(x) = +\infty$$

g est une bijection strictement croissante de \mathbb{R} sur \mathbb{R} , par conséquent pour tout $y \in \mathbb{R}$, il existe un

unique $x \in \mathbb{R}$ tel que y = g(x), g est surjective. Mais l'unicité du « x » fait que g est bijective donc il était inutile de montrer l'injectivité de g.

$$\begin{array}{c} h \colon \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 + x^3 \end{array}$$

On va étudier (sommairement) cette fonction et dresser son tableau de variation. *h* est une fonction dérivable sur \mathbb{R} . $h'(x) = 2x + 3x^2 = x(2 + 3x)$

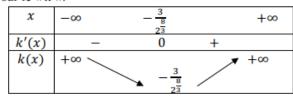
$$\lim_{x \to -\infty} h(x) = -\infty \quad \text{et} \quad \lim_{x \to +\infty} h(x) = +\infty$$

Le « x^3 » l'emporte sur le « x^2 ».

$$h(0) = 0 \text{ et } h\left(-\frac{2}{3}\right) = \left(-\frac{2}{3}\right)^2 + \left(-\frac{2}{3}\right)^3 = \frac{4}{9} - \frac{8}{27} = \frac{4}{27}$$

$$\boxed{\begin{array}{c|c} x & -\infty & -\frac{2}{3} & 0 & +\infty \\ \hline h'(x) & + & 0 & - & 0 & + \\ \hline h(x) & & & 4 \\ \hline -\infty & & & 0 \end{array}}$$

Les seules bijections de $E \subset \mathbb{R}$ sur $F \subset \mathbb{R}$ sont les fonctions strictement monotones dont l'image de *E* est *F*.


h n'est pas une bijection.

Comme h(-1) = 0 = h(0), h n'est pas injective.

Pour tout $y \in \mathbb{R}$ il existe $x \in \mathbb{R}$ tel que y = h(x), et bien il n'y a pas unicité sinon h serait bijective. Pour tout $y \in [0, \frac{4}{27}[$ il existe trois valeurs x tel que y = h(x), pour $y = \frac{4}{27}$, il y en a deux pour les autres y n'a qu'un antécédent. $k: \mathbb{R} \to \mathbb{R}$ $x \mapsto x + x^4$ On va étudier cette fonction, k est dérivable et $k'(x) = 1 + 4x^3$

$$k'(x) = 0 \Leftrightarrow 1 + 4x^3 = 0 \Leftrightarrow x^3 = -\frac{1}{4} \Leftrightarrow x = \left(-\frac{1}{2^2}\right)^{\frac{1}{3}} = -\frac{1}{2^{\frac{2}{3}}}$$
$$k\left(-\frac{1}{2^{\frac{2}{3}}}\right) = \left(-\frac{1}{2^{\frac{2}{3}}}\right) \left(1 + \left(-\frac{1}{2^{\frac{2}{3}}}\right)^3\right) = \left(-\frac{1}{2^{\frac{2}{3}}}\right) \left(1 - \frac{1}{4}\right) = \left(-\frac{1}{2^{\frac{2}{3}}}\right) \times \frac{3}{4} = -\frac{3}{2^{\frac{8}{3}}}$$
$$\lim_{x \to -\infty} h(x) = +\infty \quad \text{et} \quad \lim_{x \to +\infty} h(x) = +\infty$$

Le « x^4 » l'emporte sur le « x ».

Pour tout $y > -\frac{3}{2^{\frac{8}{3}}}$, y admet deux antécédents, k est ni surjective ni injective.

Exercice 10

 $\begin{array}{l} C_{\mathbb{R}}A_1 =]0, +\infty[; \ C_{\mathbb{R}}A_2 = [0, +\infty[; \ C_{\mathbb{R}}A_3 =] - \infty, 0]; \ C_{\mathbb{R}}A_4 =] - \infty, 0[; \\ C_{\mathbb{R}}A_5 =] - \infty, 1] \cup [2, +\infty[; \ C_{\mathbb{R}}A_6 =] - \infty, 1[\cup [2, +\infty[\end{array}] \end{array}$

 $C_{\mathbb{R}}A = [1,2]; \quad C_{\mathbb{R}}B \cap C_{\mathbb{R}}C = [1, +\infty[\cap]2, +\infty[= [1,2]]$

Remarque :

1.

2.

$$C_{\mathbb{R}}B \cap C_{\mathbb{R}}C = C_{\mathbb{R}}(B \cup C) = C_{\mathbb{R}}A$$

· •• • • •