Université ZIANE Achour de Djelfa Faculté Sciences Exactes et Informatique Département de Physique 1^{ere} année Master : Matière Condensée

diffice iviasion . Iviation Contactisee

Matière : Mathématiques pour la physique –II-

SERIE N°5 : APPLICATIONS LINEAIRES

Exercice n°1:

Considérons \mathbb{R}^3 et \mathbb{R}^2 comme espaces vectoriels sur \mathbb{R} et soit : $f:\mathbb{R}^3 \to \mathbb{R}^2$ une fonction définie par :

$$f(x, y, z) = (2x + y - z, x + y + z).$$

- 1. Montrer que f est une application linéaire.
- 2. Caractériser le noyau de f et trouver sa dimension.
- 3. Caractériser l'image de f et trouver sa dimension.
- 4. f est-elle surjective? f est-elle injective?

Exercice n°2:

On considère \mathbb{R}^3 comme espace vectoriel sur \mathbb{R} et $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par :

$$f(x, y, z) = (-x, x + y + z, -y - z).$$

- 1. Vérifier que f définie bien une application linéaire.
- 2. Ecrire la matrice A de f par rapport à la base canonique $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ de \mathbb{R}^3 .
- 3. Caractériser le noyau de f et trouver sa dimension.
- 4. Caractériser l'image de f et trouver sa dimension.
- 5. f est-elle bijective? Comment appelle-t-on l'application f.
- 6. On considère les vecteurs suivants dans \mathbb{R}^3 :

$$\vec{v_1} = (0, -1, 0), \ \vec{v_2} = (1, 0, 1), \ \vec{v_3} = (1, 0, 0).$$

- Montrer que $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ est une base de \mathbb{R}^3
- \bullet Ecrire la matrice B de f , par rapport à la base $\left\{ \vec{v_1} \ , \vec{v_2} \ , \vec{v_3} \ \right\}$.

Exercice n°3:

On considère \mathbb{R}^3 comme espace vectoriel sur \mathbb{R} et $f:\mathbb{R}^3 \to \mathbb{R}^3$ l'endomorphisme défini par :

$$f(x, y, z) = (x + 2y, -z, 2x - 3y + 4z, -7y + 6z).$$

- 1. Ecrire la matrice de f, par rapport à la base canonique de \mathbb{R}^3 .
- 2. déterminer une base de $\ker f$ et une base de $\operatorname{Im} f$.
- 3. Calculer $\dim(\ker f)$ et $\dim(\operatorname{Im} f)$.

Exercice n°4:

On considère \mathbb{R}^4 comme espace vectoriel sur \Re et $f:\mathbb{R}^4 \to \mathbb{R}^4$ l'endomorphisme défini par :

$$f(x, y, z, t) = (y + z, x + y, x, t)$$
.

- 1. Ecrire la matrice de f, par rapport à la base canonique de \mathbb{R}^4 .
- 2. Donner une base de $\operatorname{Im} f$.
- 3. On considère les vecteurs :

$$\vec{v}_{1} = (0,1,1,0), \vec{v}_{2} = (1,0,1,0), \vec{v}_{3} = (1,1,0,0), \vec{v}_{4} = (0,0,0,2)$$
.

- Montrer que $\{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$ est une base de \mathbb{R}^4 .
- 4. Ecrire la matrice P, de passage de la base canonique de \mathbb{R}^4 , à la base $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$.
- 5. Calculer: $P^2 P$.
- 6. Ecrire la matrice de f , par rapport à la base $\left\{\vec{v_1},\vec{v_2},\vec{v_3},\vec{v_4}\right\} \,\, \mathrm{de} \, \mathbb{R}^4$.

Exercice n°5:

On considère un corps commutatif k. On suppose que la matrice :

$$A = \begin{pmatrix} 1 & 0 & 4 & 0 \\ 2 & 4 & 0 & 1 \\ 1 & 6 & 7 & 0 \end{pmatrix}$$

représente l'application linéaire $f: \mathbb{k}^4 \to \mathbb{k}^3$ par rapport aux bases canoniques de \mathbb{k}^4 et \mathbb{k}^3 .

- 1. On suppose que $\mathbb{k}=\mathbb{R}$. Déterminer, dans ce cas, les dimensions du noyau de f et de l'image de f .
- 2. On suppose que $k = \mathbb{Z}/3\mathbb{Z}$. Déterminer, dans ce cas, les dimensions du noyau de f et de l'image de f.

Exercice n°6:

Considérons \mathbb{R}^3 comme espace vectoriel sur \mathbb{R} . Soient α un nombre réel et $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorphisme défini par :

$$f(x, y, z) = (x + y + z, x + \alpha y + z, x + y + \alpha^2 z).$$

- 1. Ecrire la matrice de f, par rapport à la base canonique de \mathbb{R}^3 .
- 2. Déterminer, suivant les valeurs de α , une base de Im f.
- 3. Déterminer, suivant les valeurs de α , une base de ker f.

Exercice n°7:

Considérons \mathbb{R}^3 comme espace vectoriel sur \mathbb{R} . Soit $g:\mathbb{R}^3 \to \mathbb{R}^3$ l'endomorphisme dont la matrice, par rapport à la base canonique de \mathbb{R}^3 , est :

$$A = \begin{pmatrix} 0 & -1 & -\sin\theta \\ 1 & 0 & \cos\theta \\ -\sin\theta & \cos\theta & 0 \end{pmatrix}, \text{ où } \theta \text{ est un nombre réel.}$$

- 1. Déterminer le noyau de g, l'image de g et calculer leur dimension.
- 2. Calculer A^2 et A^3 . En déduire que : $Im(g \circ g) = \ker g$.
- 3. Dans \mathbb{R}^3 , on considère le vecteur : $\vec{v} = (\cos \theta, \sin \theta, 0)$.Montrer que $\{\vec{v}, g(\vec{v}), g(g(\vec{v}))\}$ est une base de \mathbb{R}^3 .
- 4. Ecrire la matrice de g par rapport à la base : $\{\vec{v}, g(\vec{v}), g(g(\vec{v}))\}$.