

Université Pierre-et-Marie-Curie

Faculté de Médecine Pierre-et-Marie-Curie PCEM 1

Support de cours CHIMIE GENERALE

CHAPITRE V - CINETIQUE CHIMIQUE

Professeur Antoine GEDEON
Professeur Ariel de KOZAK

(mise à jour : 26 mai 2008)

CHAPITRE V: CINETIQUE CHIMIQUE

- 1. Définitions et détermination des vitesses.
- 1.1. Vitesse moyenne.

On suit l'évolution, à T = cte dans un système fermé de volume V, de la formation du produit B au cours du temps : n(B) = f(t)

- vitesse moyenne de la réaction entre t₁ et t₂ :

$$v_m = \frac{n_2 - n_1}{t_2 - t_1} = \text{pente de la droite } M_1 M_2$$

 $n_2 = \frac{\text{m(B)}}{\text{m_2}}$

1.2. Vitesse instantanée.

$$v_i = \frac{dn_B}{dt} = \lim \left(\frac{n_2 - n_1}{t_2 - t_1}\right)_{t_2 - t_1 \to 0}$$

1.3. Vitesse spécifique instantanée (par unité de volume).

$$v_{B} = \frac{1}{V} \frac{dn_{B}}{dt}$$
Volume

• A volume constant on a:

$$v_B = \frac{d\left(\frac{n_B}{V}\right)}{dt} = \frac{d[B]}{dt}$$
 $d[B] > 0$, car [B] a augmenté

v_B est la vitesse d'apparition du produit B

• La vitesse v_A = vitesse de disparition du réactif A s'écrit :

$$v_A = -\frac{d[A]}{dt};$$
 $d[A] < 0$

• Pour la réaction :

1 mole de A disparaît → 1 mole de B apparaît

$$-d[A] = d[B]$$

$$\Rightarrow V_A = V_B$$

 \rightarrow = pente de la tangente de la courbe $n_B = f(t)$

• Pour la réaction :
$$a A + b B \longrightarrow c C + d D$$

les vitesses v_A, v_B, v_C et v_D sont différentes, car a, b, c et d peuvent être différents.

$$v_A = -\frac{d[A]}{dt}; v_B = -\frac{d[B]}{dt}; v_C = +\frac{d[C]}{dt}; v_D = +\frac{d[D]}{dt};$$

Soit v la vitesse de réaction :

$$v = \frac{1}{a}v_A = \frac{1}{b}v_B = \frac{1}{c}v_C = \frac{1}{d}v_D$$

D'où:
$$v(t) = \ominus \frac{1}{a} \frac{d[A]}{dt} = \ominus \frac{1}{b} \frac{d[B]}{dt} = \bigoplus \frac{1}{c} \frac{d[C]}{dt} = \bigoplus \frac{1}{d} \frac{d[D]}{dt}$$

disparition des réactifs

apparition des produits

v s'exprime en mol.L⁻¹.s⁻¹ concentration. $temps^{-1}$

2. Détermination expérimentale des vitesses de réaction.

- Composés gazeux : détermination de la pression partielle.
- Electrolyte : mesure de la conductivité électrique, (proportionnelle à la concentration).
- Substance chirale : mesure du pouvoir rotatoire.
- Utilisation des méthodes spectroscopiques (IR, UV visible) :

l'intensité du spectre détermine la concentration des substances présentes.

- Dosage chimique d'un réactif ou d'un produit : on prélève à des temps plus ou moins rapprochés un petit échantillon et on effectue un dosage acido-basique, oxydo-réducteur ...

3. Influence de la concentration sur la vitesse d'une réaction : ordre d'une réaction.

Expression de la vitesse en fonction des concentrations des réactifs :

$$a A + b B \longrightarrow c C + d D$$

$$v = k[A]^{\alpha}.[B]^{\beta}$$

α: ordre partiel par rapport à A

β : ordre partiel par rapport à B

 $\alpha + \beta$: ordre total ou global de la réaction (nombre réel quelconque)

- constante de vitesse

4. Relation concentration/temps : Equation Cinétique.

4.1. Système comportant un seul réactif.

$$a A \longrightarrow b B + c C$$

$$v = -\frac{1}{a} \frac{d[A]}{dt} = k [A]^{\alpha}$$
: Equation Cinétique

La vitesse possède un ordre α par rapport à A.

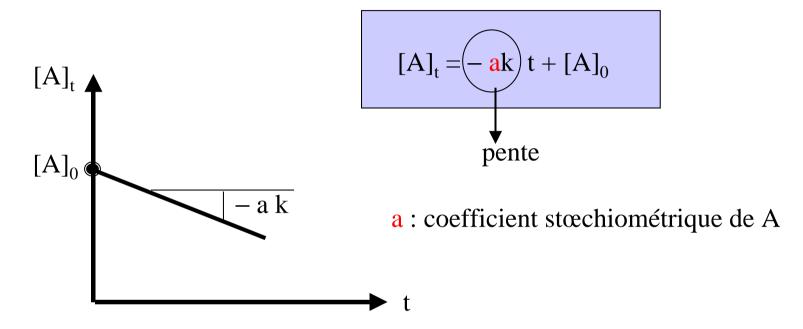
a) Réaction d'ordre nul : $\alpha = 0$

$$v = -\frac{1}{a} \frac{d[A]}{dt} = k [A]^0 = k$$

Après intégration : $[A]_t - [A]_0 = -a k t$

$$\Rightarrow [A]_t = [A]_0 - \mathbf{a} k t$$

[A]_t varie linéairement en fonction de t :



Ordre 0 : v = k = constante !!

k en mol.L⁻¹.s⁻¹

b) Réaction d'ordre 1 : $\alpha = 1$

Equation Cinétique

$$a A \longrightarrow b B + c C$$

$$v = -\frac{1}{a} \frac{d[A]}{dt} = k [A]^{1}$$

$$v = -\frac{1}{a} \frac{d[A]}{dt} = k [A]^{1}$$

$$\frac{d[A]}{[A]} = -a k dt$$

$$= -\frac{1}{a} \frac{d[A]}{[A]} = -a k \int_{[A]_{o}}^{[A]} \frac{d[A]}{[A]} = -a k \int_{t=0}^{t} dt$$

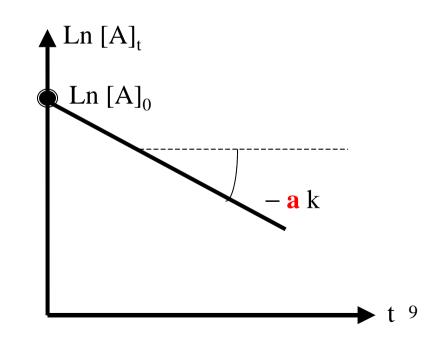
Après intégration : Ln
$$[A]_t$$
 – Ln $[A]_0$ = – \mathbf{a} k t

D'où:

$$\operatorname{Ln}\frac{[A]_{t}}{[A]_{0}} = -a k t$$

$$Ln[A]_t = Ln[A]_0 - a k t$$

ou
$$[A]_t = [A]_0 \exp[-a k t]$$
$$k \text{ en } s^{-1}$$



- Temps de demi-réaction : t_{1/2}

 $t_{1/2}$: temps nécessaire à la consommation de la moitié de la concentration initiale du réactif.

à
$$t = t_{1/2}$$
: $[A] = \frac{[A]_0}{2}$

Equation cinétique
$$\Rightarrow$$
 Ln $\frac{[A]_0/2}{[A]_0}$ = Ln $\frac{1}{2}$ = - a k t_{1/2}

$$\Rightarrow$$
 Ln 2 = a k t_{1/2} \Longrightarrow $t_{1/2} \approx \frac{0.7}{a \text{ k}}$

$$t_{1/2}$$
 est indépendant de $[A]_0$: (quand $\alpha = 1$)

Ordre 1 : Unité de k : (temps)⁻¹

- Temps de réaction t_v : cas général

correspond au temps écoulé depuis le début de la réaction jusqu'à ce que **t**_v:

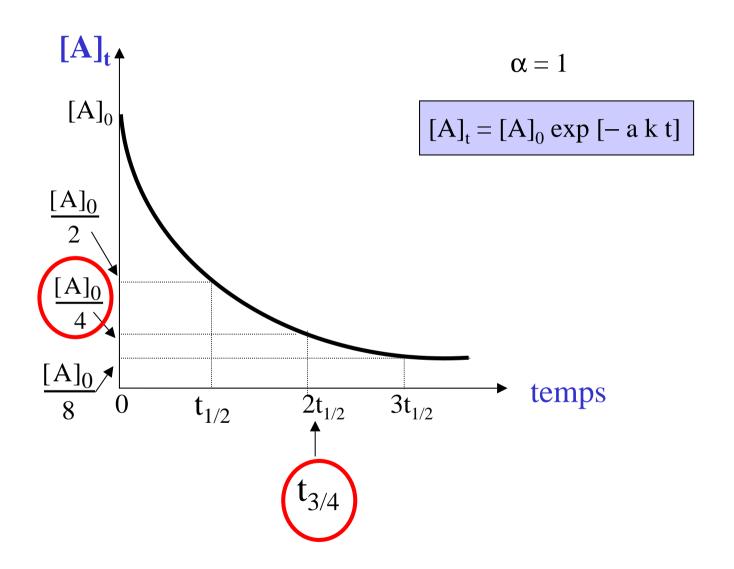
la quantité
$$x$$
 du réactif ait été consommée $t_{1/4}$: \Rightarrow 1/4 a réagi \Rightarrow il reste 3/4 \Rightarrow $[A]_t = 3/4 [A]_0$

Ex : on considère la réaction $A \rightarrow B$ qui est du premier ordre

$$\Rightarrow Ln \frac{[A]_0}{[A]_t} = kt \qquad \Rightarrow \quad t = \frac{1}{k} Ln \frac{[A]_0}{[A]_t}$$

$$t_{\frac{1}{4}} = \frac{1}{k} \text{ Ln } \frac{[A]_0}{\frac{3}{4}[A]_0} \Rightarrow t_{\frac{1}{4}} = \frac{1}{k} \text{ Ln} \frac{4}{3}$$
: ordre 1

$$t_{1/2} = \frac{1}{k}$$
. Ln 2
 $t_{1/4} = \frac{1}{k}$. Ln $\frac{4}{3}$ $\Rightarrow \frac{t_{1/2}}{t_{1/4}} = \frac{\text{Ln } 2}{\text{Ln } \frac{4}{3}} = 2, 4 \Rightarrow t_{1/2} = 2, 4 t_{1/4}$



- Exemple d'une réaction d'ordre 1 :

Datation par le carbone 14.

La désintégration radioactive du carbone 14 s'écrit :

$${}^{14}_{6}\text{C}^* \rightarrow {}^{14}_{7}\text{N} + {}^{0}_{-1}\text{e} \quad \text{soit} : {}^{1}_{0}\text{n} \rightarrow {}^{1}_{+1}\text{p} + {}^{0}_{-1}\text{e}$$

Elle obéit à une loi cinétique du premier ordre. L'activité A (vitesse de désintégration) s'écrit :

$$A = -\frac{1}{1} \frac{dN}{dt} = \lambda N_t \implies N_t = N_0 \exp(-\lambda t)$$

 λ est la constante de vitesse dite «constante radioactive», N_o est le nombre de désintégrations observées à un instant initial t_o et N_t celui à un instant t postérieur.

Principe de la datation par ¹⁴C*:

La concentration en 14 C* dans un végétal vivant est constante, car il y a un équilibre entre l'absorption de CO_2 de l'atmosphère par le végétal au cours de la photosynthèse et la désintégration du 14 C*.

 \Rightarrow A la mort du végétal l'absorption de CO_2 cesse et la radioactivité des restes de celui-ci décroît (la quantité de $^{14}C^*$ décroît).

Exemple:

Quel est l'âge d'un charbon de bois dont l'activité est telle que $N_t = 8,5\,$ d.p.min. (désintégrations par minute) et par gramme de carbone total ? La période (ou temps de vie) du $^{14}\text{C*}$ est $t_{1/2} = 5568(\pm\ 30)$ ans et $N_0 = 13,6\,$ d.p.min. et par gramme de carbone total pour une plante vivante.

Ordre 1 : Calcul de λ :

$$\lambda = \frac{0,693}{t_{1/2}} = \frac{0,693}{5568} = 1,245.10^{-4} \text{ an}^{-1}$$

$$A = -\frac{1}{1} \frac{dN}{dt} = \lambda N_t \quad \text{soit}: \quad Ln N_t = Ln N_o - \lambda t$$

$$t = -\frac{1}{\lambda} \ln \frac{N_t}{N_0} = -\frac{1}{1,245.10^{-4}} \ln \frac{8,5}{13,6} = 3775 \text{ ans}$$

c) Réaction d'ordre 2 : $\alpha = 2$

$$\mathbf{a} \mathbf{A} \longrightarrow \mathbf{C}$$

$$v = -\frac{1}{a} \frac{d[A]}{dt} = k[A]^2$$
; $-\frac{d[A]}{[A]^2} = a k dt$

Intégration :
$$\int_{[A]_o}^{[A]} -\frac{d[A]}{[A]^2} = a k \int_{t=0}^{t} dt$$

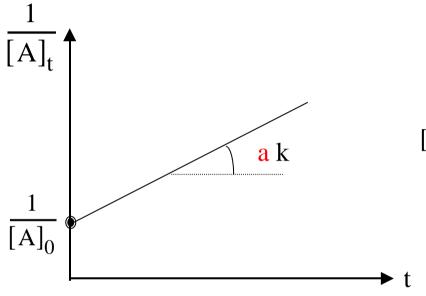
$$\frac{1}{[A]_t} - \frac{1}{[A]_o} = akt$$

D'où:
$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + a k t$$
 ou: $[A]_t = \frac{[A]_0}{1 + a [A]_0 k t}$

$$[A]_{t} = \frac{[A]_{0}}{1 + a [A]_{0} k t}$$

$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + a k t$$

k : concentration⁻¹. temps⁻¹ (mol⁻¹.L.s⁻¹)



$$[A]_{t} = \frac{1}{a k t + 1/[A]_{0}}$$

$$[A]_{0}$$
branche d'hyperbole

 \Rightarrow t_{1/2} est inversement proportionnel à [A]₀ ($\alpha = 2$)

4.2. Système comportant deux réactifs.

Cas :
$$[A]_t = [B]_t$$
 ; $(\alpha = 1; \beta = 1)$

$$A + B \longrightarrow C$$

$$t = 0 \quad [A]_0 \quad [B]_0 \quad 0$$

$$t \quad [A]_t \quad [B]_t \quad \xi \quad avec : [A]_t = [A]_0 - \xi$$

Puisque 1 mole de A réagit avec une mole de B

et
$$[A]_0 = [B]_0 \Rightarrow [A]_t = [B]_t$$

$$\Rightarrow v = -\frac{d[A]}{dt} = k[A]_t^1 [B]_t^1 = k[A]^2$$

$$\Rightarrow \frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$$

4.3. Loi cinétique en fonction de l'avancement ξ .

$$\dot{a} \quad t = 0 \qquad [A]_0 \qquad 0$$

à t
$$[A]_t = [A]_0 - \xi$$
 ξ

On a vu que:
$$v = -\frac{d[A]}{dt} = k[A]_t^{\alpha}$$

En remplaçant $[A]_t$ par $([A]_o - \xi)$ on obtient :

$$v = \bigcirc \frac{d([A]_o \ominus \xi)}{dt} = k([A]_o - \xi)^{\alpha}$$

$$\Rightarrow$$
 $v = \bigoplus \frac{d\xi}{dt} = k[A]_t^{\alpha} = k([A]_o - \xi)^{\alpha}$

5. Dégénérescence de l'ordre d'une réaction.

$$A + B \longrightarrow C$$

$$V = k[A]_t^{\alpha}[B]_t^{\beta}$$

Si $[B]_0 >> [A]_0$: (le réactif B est en grand excès par rapport à A)

$$\Rightarrow$$
 [B]_t = [B]₀ = constante

D'où:
$$v = k[B]_0^{\beta} [A]_t^{\alpha}$$
 $k = \text{cte de vitesse (réelle)}$

$$\Rightarrow$$
 v = k'[A]_t^{\alpha} | k' = constante de vitesse apparente = k[B]₀^{\beta}

La constante de vitesse réelle k dépend uniquement de T.

La constante de vitesse apparente k' dépend de la concentration initiale de B.

• L'ordre global est $\alpha + \beta$ — l'ordre apparent est α \Rightarrow Dégénérescence de l'ordre

Cette méthode est utilisée pour déterminer l'ordre partiel par rapport à un réactif donné.

19

6. Loi de vitesse en fonction des pressions partielles.

La vitesse peut aussi être exprimée en fonction des pressions partielles.

$$a A_{(gaz)} \longrightarrow b B_{(gaz)} + c C_{(gaz)}$$

$$\mathbf{a} \ \mathbf{A}_{(gaz)} \longrightarrow \mathbf{b} \ \mathbf{B}_{(gaz)} + \mathbf{c} \ \mathbf{C}_{(gaz)} \qquad \mathbf{v} = -\frac{1}{a} \frac{d\mathbf{P}_A}{dt} = \mathbf{k} (\mathbf{P}_A)^{\alpha}$$

a) Réaction d'ordre nul : $\alpha = 0$

$$-\frac{1}{a}\frac{dP_A}{dt} = kP_A^0 = k$$
 $(P_A)_t = (P_A)_0 - \mathbf{a} \ k \ t$ k en pression. temps⁻¹

$$(P_A)_t = (P_A)_0 - \mathbf{a} k t$$

b) Réaction d'ordre $1:\alpha=1$

$$\frac{dP_A}{P_A} = -a k dt$$

$$\frac{dP_A}{P_A} = -a k dt \qquad Ln \frac{(P_A)_t}{(P_A)_0} = -a k t$$

k en temps⁻¹

c) Réaction d'ordre 2 : $\alpha = 2$

$$\frac{1}{(P_A)_t} - \frac{1}{(P_A)_0} = a k t$$

7. Cinétique des réactions élémentaires.

7.1. Réaction élémentaire ⇒ elle se fait en un acte, ou en un choc unique.

Réaction en une seule étape, faisant seulement intervenir les réactifs.

Exemple:
$$C_4H_8 \longrightarrow 2 C_2H_4$$

7.2. Règle de Van t'Hoff

Dans une réaction élémentaire :

Ordres partiels = Coefficients stœchiométriques

Exemple:
$$NO + O_3 \rightarrow NO_2 + O_2$$

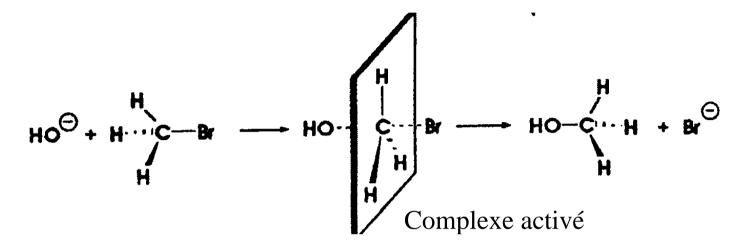
⇒ un choc unique entre les 2 molécules : participation de deux molécules dans la réaction élémentaire.

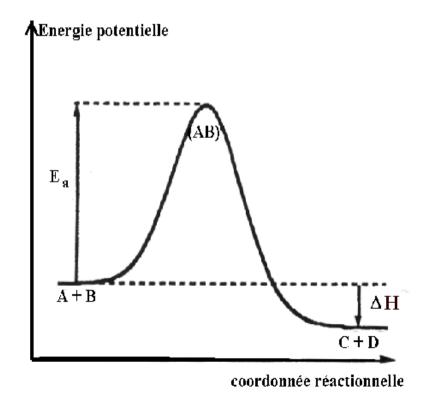
⇒ sa molécularité = nombre d'entités chimiques qui participent à la réaction élémentaire = 2

⇒ réaction bimoléculaire

$$\Rightarrow$$
 v = k[NO][O₃]

7.3. Théorie de l'état de transition ou du complexe activé.





8. Loi d'Arrhénius.

Influence de la température sur la vitesse des réactions :

$$v = k [A]^{\alpha} [B]^{\beta}$$

$$k = A_o \exp\left(-\frac{E_a}{RT}\right)$$
 ou $Ln k = Ln A_o - \frac{E_a}{RT}$

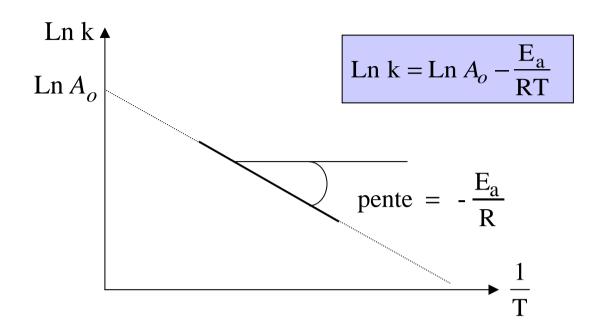
 A_o : facteur préexponentiel ou facteur de fréquence de collisions.

- A_o est indépendant de la température.
- A_o a les mêmes unités que k.

 E_a : Energie d'activation. Elle a les mêmes unités que RT (J.mol⁻¹).

- La température augmente le nombre de collisions entre A et B

=> k augmente avec T



à
$$T_1$$
: Ln $k_1 = \text{Ln } A_o - \frac{E_a}{RT_1}$ (1)

à
$$T_2$$
: Ln $k_2 = \text{Ln } A_o - \frac{E_a}{RT_2}$

(2) - (1)
$$\Rightarrow$$
 $\left| \text{Ln} \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \right|$ $R = 8,31 \text{ J.K}^{-1}.\text{mol}^{-1}$

9. Cinétique des réactions complexes.

Réactions opposées ou renversables : $aA + bB \rightleftharpoons cC + dD$

 $v_1 = k_1 [A]^{\alpha} [B]^{\beta}$: vitesse de réaction dans le sens 1

 $v_{-1} = k_{-1} [C]^{\alpha}$; vitesse de réaction dans le sens -1

⇒ v globale de la réaction :

$$v = -\frac{1}{a} \frac{d[A]}{dt} = v_1 - v_{-1} = k_1 [A]^{\alpha} [B]^{\beta} - k_{-1} [C]^{\alpha'} [D]^{\beta'}$$

A l'équilibre :

$$\mathbf{v}_1 = \mathbf{v}_{-1}$$

$$v_1 = v_{-1}$$
 D'où:
$$\frac{k_1}{k_{-1}} = \frac{\left[C\right]_{\acute{eq}}^{\alpha'} \left[D\right]_{\acute{eq}}^{\beta'}}{\left[A\right]_{\acute{eq}}^{\alpha} \left[B\right]_{\acute{eq}}^{\beta}}$$

Si les réactions dans les sens 1 et –1 sont élémentaires : $\alpha = a$; $\beta = b$; $\alpha' = c$; $\beta' = d$

$$\Rightarrow \frac{k_1}{k_{-1}} = \frac{\left[C\right]_{\acute{eq}}^c \left[D\right]_{\acute{eq}}^d}{\left[A\right]_{\acute{eq}}^a \left[B\right]_{\acute{eq}}^b} = K$$

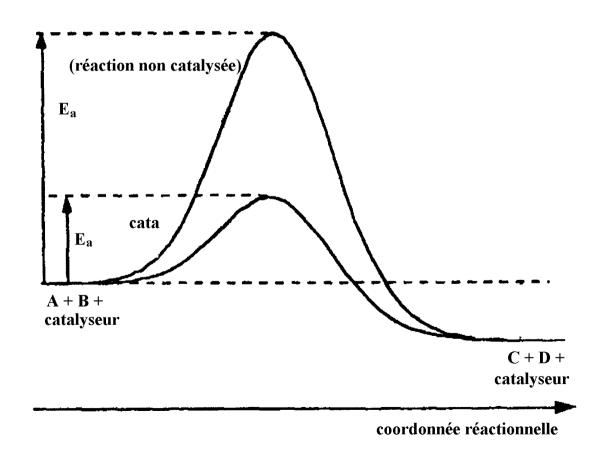
K = constante d'équilibre

10. Catalyse.

10.1. Définition et mode d'action des catalyseurs.

Un catalyseur est un corps qui accélère la vitesse d'une réaction, mais qui n'est pas consommé au cours de celle-ci.

$$A + B + catalyseur \longrightarrow C + D + catalyseur$$

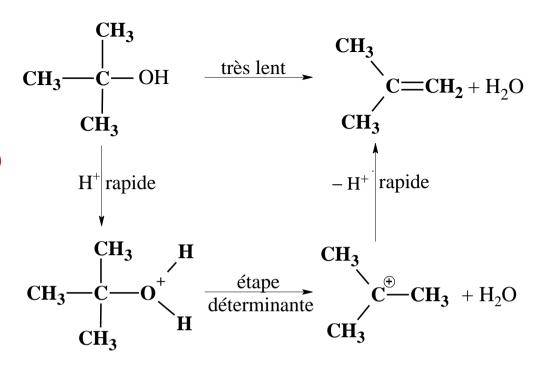


10.2. Types de catalyse.

10.2.1. Catalyse homogène.

Exemple 1:

H⁺ (catalyse homogène acido/basique)



Exemple 2: catalyse homogène redox

La réaction d'oxydation des ions iodure I⁻ par les ions peroxodisulfate $S_2O_8^{2-}$ pour obtenir du diiode I₂ et des ions sulfate SO_4^{2-} est catalysée par les ions ferreux Fe²⁺.

10.2.2. Catalyse hétérogène : Exemple : hydrogénation catalytique sur platine

$$CH_2 = CH_2 + H_2 \xrightarrow{Pt} CH_3 - CH_3$$

