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Basic notions

In this introductory chapter some mathematical notions are presented rapidly,
which lie at the heart of the study of Mathematical Analysis. Most should already
be known to the reader, perhaps in a more thorough form than in the following
presentation. Other concepts may be completely new, instead. The treatise aims
at fixing much of the notation and mathematical symbols frequently used in the
sequel.

1-1 Sets L3 °

We shall denote sets mainly by upper case letters X, Y, ..., while for the members
or elements of a set lower case letters z,y, ... will be used. When an element z is
in the set X one writes z € X (‘z is an element of X, or ‘the element z belongs
to the set X’), otherwise the symbol z ¢ X is used.

The majority of sets we shall consider are built starting from sets of numbers.
Due to their importance, the main sets of numbers deserve special symbols, namely:

The definition and main properties of these sets, apart from the last one, will
be briefly recalled in Sect.1.3. Complex numbers will be dealt with separately in
Sect. 8.3.

Let us fix a non-empty set X, considered as ambient set. A subset A of X
is a set all of whose elements belong to X; one writes A C X (‘A is contained,
or included, in X’) if the subset A is allowed to possibly coincide with X, and
AC X;. (‘A,is properly contained in X’) in case A is a proper subset of X, that
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Figure 1.1. Venn diagrams (left) and complement (right)

is, if it does not exhaust the whole X. From the intuitive point of view it may
be useful to represent subsets as bounded regions in the plane using the so-called
Venn diagrams (see Fig. 1.1, left).

A subset can be described by listing the elements of X which belong to it

A :_.'{'x',.y, P z.}; :

the order in which elements appear is not essential. This clearly restricts the use
of such notation to subsets with few elements. More often the notation

A={seX|p@)} o A={s€X : p(x)}

will be used (read ‘4 is the subset of elements z of X such that the condition p(z)
holds’); p(z) denotes the characteristic property of the elements of the subset, i.e.,
the condition that is valid for the elements of the subset only, and not for other

elements. For example, the subset A of natural numbers smaller or equal than 4
may be denoted

A={0,1,2,3,4} or A={zeN|z<4)}.

The expression p(z) ='z < 4’ is an example of predicate, which we will return to
in the following section.

The collection of all subsets of a given set X forms the power set of X, and
is denoted by P(X). Obviously X € P(X). Among the subsets of X there is the
empty set, the set containing no elements. It is usually denoted by the symbol
0,50 0 € P(X). All other subsets of X are proper and non-empty.

Consider for instance X = {1,2, 3} as ambient set. Then

P(X) = {ﬂ, {1}! {2}1 {3}: {11 2}1 {la 3}! {21 3]’:-X}

Note that X contains 3 elements (it has cardinality 3), while P(X) has 8 = 23
elements, hence has cardinality 8. In general if a finite set (a set with a finite
number of elements) has cardinality n, the power set of X has cardinality 2™.

&
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Starting from one or more subsets of X, one can define new subsets by means
of set-theoretical operations. The simplest operation consists in taking the com-
plement: if A is a subset of X, one defines the complement of A4 (in X) to be the
subset

CA={zeX |z¢gA}

made of all elements of X not belonging to A (Fig.1.1, right).

Sometimes, in order to underline that complements are taken with respect to
the ambient space X, one uses the more precise notation CxA. The following
properties are immediate:

Cx=0, COB=X, C(CA)=A.

For example, if X = N and A is the subset of even numbers (multiples of 2), then
CA is the subset of odd numbers.

Given two subsets A and B of X, one defines intersection of A and B the
subset

ANB={z€ X |zeAandze€ B}

containing the elements of X that belong to both A and B, and union of A and
B the subset

.ALJB='.{_m€X|.x€'Aerx.€B}: >

made of the elements that are either in A or in B (this is meant non-exclusively,
so it includes elements of AN B), see Fig.1.2.

We recall some properties of these operations.

i) Boolean properties:
ANCA=0, AUCA=X;

//""_‘_"‘“‘-w... \ [//,___. —_\\ v
{f\ / g | AUB AUB
\‘\ (i NnB 5 5
. A / A
x ~— x

Figure 1.2, Intersection and union of sets
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). commutative, associative and distributive properties:

AnNB=BnNA, AUB=BUA,
(AnB)NnC=ANn(BNCQC), (AUB)UC =AU (BUC),
(ANB)uC=(AuC)n(BuUC), (AUB)NC=(ANC)u(BNC);

i) De Morgan laws:
C(ANnB)=CAUCB, C(AUB)=CANCB.

Notice that the condition A C B is equivalent to ANB = A4, or AUB = B.

There are another couple of useful operations. The first is the difference

between a subset A and a subset B, sometimes called relative complement
of Bin A

A\B={z¢A|c¢B)=ANCB

(read ‘A minus B’), which selects the elements of A that do not belong to B. The
second operation is the symmetric difference of the subsets A and B

AAB=(A\B)U(B\4)=(AUB)\(4nB),

which picks out the elements belonging either to A or B, but not both (Big.1.3).

For example, let X = N, A be the set of even numbers and B = {neN|n<
10} the set of natural numbers smaller or equal than 10. Then B\A=1{1,3,5,7,9}
is the set of odd numbers smaller than 10, A \ B is the set of even numbers larger
than 10, and AAB is the union of the latter two.

Figure 1.3. The difference A\ B (left) and the symmetric difference A A B (right) of
two sets
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p(z) = ‘z is strictly less than 7’ for example, yields the false formula ‘Vz € N, p(z)’
(since p(8) is false, for example), while ‘3z € N, p(z)’ is true (e.g., z = 6 satisfies
the assertion).

The effect of negation on a quantified predicate must be handled with attention.
Suppose for instance « indicates the generic student of the Polytechnic, and let p(z)
= ‘g is an Italian citizen’. The formula ‘Vz, p(z)’ (‘every student of the Polytechnic
has Ttalian citizenship’) is false. Therefore its negation ‘~(Vz, p(z))’ is true, but
beware: the latter does not state that all students are foreign, rather that ‘there
is at least one student who is not Italian’. Thus the negation of Vz, p(z)’ is
‘Iz, —p(z)’. We can symbolically write

~(Vz, p(e)) < 3o, -p(a).

Similarly, it is not hard to convince oneself of the logic equivalence

-3z, p(z)) < Vz, -p(z).

If a predicate depends upon two or more arguments, each of them may be
quantified. Yet the order in which the quantifiers are written can be essential.
Namely, two quantifiers of the same type (either universal or existential) can be
swapped without modifying the truth value of the formula,; in other ternis

Va vy, p(z,y) <= YyVa, p(z,y),
3z 3y, p(z,y) <= 3Jy3z, p(z,y).

On the contrary, exchanging the places of different quantifiers usually leads to
different formulas, so one should be very careful when ordering quantifiers.

As an example, consider the predicate p(z,y) = ‘¢ > y’, with z, y varying in the
set of natural numbers. The formula ‘Vz Vy, p(z,y)’ means ‘given any two natural
numbers, each one is greater or equal than the other’, clearly a false statement.
The formula ‘vz 3y, p(z,y)’, meaning ‘given any natural number z, there is a
natural number y smaller or equal than z’, is true, just take y = z for instance.
The formula ‘3z Vy, p(z,y)’ means ‘there is a natural number z greater or equal
than each natural number’, and is false: each natural number = admits a successor
z + 1 which is strictly bigger than z. Eventually, ‘3z 3y, p(z,y)’ (‘there are at
least two natural numbers such that one is bigger or equal than the other’) holds
trivially.

1.3 Sets of numbers

Let us briefly examine the main sets of numbers used in the book. The discussion
is on purpose not exhaustive, since the main properties of these sets should already
be known to the reader.
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The set N of natural numbers. This set has the numbers 0,1, 2, . .. as elements.
The operations of sum and product are defined on N and enjoy the well-known
commutative, associative and distributive properties. We shall indicate by N, the
set of natural numbers different from 0

N, =N\ {0}.

A natural number n is usually represented in base 10 by the expansion n = ck 10%+
ck—110F=1 4 ... 4 ¢110 + ¢, where the c¢;’s are natural numbers from 0 to 9 called
decimal digits; the expression is unique if one assumes cx # 0 when n # 0. We
shall write n = (cxCr—1 - - - €1C0)10, OF more easily n = cxCk-1 . ..C1Co- Any natural
number > 2 may be taken as base, instead of 10; a rather common alternative is
2, known as binary base.

Natural numbers can also be represented geometrically as points on a straight
line. For this it is sufficient to fix a first point O on the line, called origin, and
associate it to the number 0, and then choose another point P different from
0, associated to the number 1. The direction of the line going from O to P is
called positive direction, while the length of the segment OP is taken as unit for
measurements. By marking multiples of OP on the line in the positive direction
we obtain the points associated to the natural numbers (see Fig. 1.4).

The set Z of integer numbers. This set contains the numbers 0,+1, -1,
+2,—2,... (called integers). The set N can be identified with the subset of Z
consisting of 0, +1,+2,... The numbers +1,+2,... (—=1,-2,...) are said positive
integers (resp. negative integers). Sum and product are defined in Z, together with
the difference, which is the inverse operation to the sum.

An integer can be represented in decimal base z = £ckCk—1.-.C1C0- The geo-
metric picture of negative integers extends that of the natural numbers to the left
of the origin (Fig.1.4).

The set Q of rational numbers. A rational number is the quotient, or ratio,
of two integers, the second of which (denominator) is non-zero. Without loss of
generality one can assume that the denominator is positive, whence each rational
number, or rational for simplicity, is given by

r_—.%, with z € Z and n € N,.

Moreover, one may also suppose the fraction is reduced, that is, z and n have no
common divisors. In this way the set Z is identified with the subset of rationals

&l
L]

-2 =t 0 1

Y

0] P
Figure 1.4. Geometric representation of numbers
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whose denominator is 1. Besides sum, product and difference, the operation of
division between two rationals is defined on @, so long as the second rational is
other than 0. This is the inverse to the product.

A rational number admits a representation in base 10 of the kind r» =
+¢xpCr—q -+ - €1Co-d1dy - - -, corresponding to

r = +(ck10% + cx_110571 4+ - + 110+ co + 1 107 +dal0724--).

The sequence of digits di, da, . .. written after the dot satisfies one and only one of
the following properties: i) all digits are 0 from a certain subscript i > 1 onwards (in
which case one has a finite decimal ezpansion; usually the zeroes are not written),
or ii) starting from a certain point, a finite sequence of numbers not all zero —
called period — repeats itself over and over (infinite periodic decimal expansion;
the period is written once with a line drawn on top). For example the following
expressions are decimal expansions of rational numbers

g = —351.6300---= —371.63 and E% = 12.51783783 - - - = 12.51783.

100 9
The expansion of certain rationals is not unique. If a rational number has a finite
expansion in fact, then it also has a never-ending periodic one obtained from the
former by reducing the right-most non-zero decimal digit by one unit, and adding
the period 9. The expansions 1.0 and 0.9 define the same rational number 1;

similarly, 8.357 and 8.3560 are equivalent representations of ‘14—%2-39.
The geometric representation of a rational r = =2 is obtained by subdividing

the segment OP in n equal parts and copying the subsegment m times in the
positive or negative direction, according to the sign of 7 (see again Fig.1.4).

The set R of real numbers. Not every point on the line corresponds to a rational
number in the above picture. This means that not all segments can be measured
by multiples and sub-multiples of the unit of length, irrespective of the choice of
this unit.

It has been known since the ancient times that the diagonal of a square is not
commensurable with the side, meaning that the length d of the diagonal is not a
rational multiple of the side’s length £. To convince ourselves about this fact recall
Pythagoras’s Theorem. It considers any of the two triangles in which the diagonal
splits the square (Fig.1.5), and states that

d? =0+, e, d?>=20%

0 V2
Figure 1.5. Square with side £ and its diagonal
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Calling p the ratio between the lengths of diagonal and side, we square d = pf and
substitute in the last relation to obtain p? = 2. The number p is called the square
root of 2 and it is indicated by the symbol v/2.

i Property 1.1 If the number p satisfies p? = 2, it must be non-rational.

Proof. By contradiction: suppose there exist two integers m and n, necessarily
non-zero, such that p = ™. Assume m, n are relatively prime. Taking
squares we obtain ‘E»:— — 2. hence m? = 2n?. Thus m? is even, which is to
say that m is even. For a suitable natural number k then, m = 2k. Using
this in the previous relation yields 4k? = 2n?, ie.,, n® = 2k2. Then n?,
whence also n, is even. But this contradicts the fact that m and n have no
common factor, which comes from the assumption that p is rational.

Another relevant example of incommensurable lengths, known for centuries,
pertains to the length of a circle measured with respect to the diameter. In this
case as well, one can prove that the lengths of circumference and diameter are
not commensurable because the proportionality factor, known by the symbol T,
cannot be a rational number.

The set of real numbers is an extension of the rationals and provides a math-
ematical model of the straight line, in the sense that each real number z can be
associated to a point P on the line uniquely, and vice versa. The former is called
the coordinate of P. There are several equivalent ways of constructing such exten-
sion. Without going into details, we merely recall that real numbers give rise to any
possible decimal expansion. Real numbers that are not rational, called irrational,
are characterised by having a non-periodic infinite decimal expansion, like

V2 = 1.4142135623731 - - - and 7 = 3.1415926535897 - - -

Rather than the actual construction of the set R, what is more interesting to us
are the properties of real numbers, which allow one to work with the reals. Among
these properties, we recall some of the most important ones.

i) The arithmetic operations defined on the rationals extend to the reals with
similar properties.
ii) The order relation < y of the rationals extends to the reals, again with similar
features. We shall discuss this matter more deeply in the following Sect. 1.3.1.
iii) Rational numbers are dense in the set of real numbers. This means there are
infinitely many rationals sitting between any two real numbers. It also implies
that each real number can be approximated by a rational number as well
as we please. If for example r = cxcr—1 .. crcp.dids - - - didig - - - has a non-
periodic infinite decimal expansion, we can approximate it by the rational
gi = CrCh—1 - C1c0-d1da -+ di obtained by ignoring all decimal digits past the
ith one; as i increases, the approximation of r will get better and better.
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iv) The set of real numbers is complete. Geometrically speaking, this is equivalent
to asking that each point on the line is associated to a unique real number, as
already mentioned. Completeness guarantees for instance the existence of the
square root of 2, i.e., the solvability in R of the equation z? = 2, as well as of
infinitely many other equations, algebraic or not. We shall return to this point
in Sect.1.3.2.

1.3.1 The ordering of real numbers

Non-zero real numbers are either positive or negative. Positive reals form the
subset R, negative reals the subset R_. We are thus in presence of a partition
R=R_U{0}UR,. The set

R, = {0}UR;

of non-negative reals will also be needed. Positive numbers correspond to points
on the line lying at the right — with respect to the positive direction — of the origin.

Instead of z € Ry, one simply writes > 0 (‘z is bigger, or larger, than
0°); similarly, z € R. will be expressed by z > 0 (‘z is bigger or equal than 07).
Therefore an order relation is defined by

<y <= y—z >0

This is a total ordering, i.e., given any two distinct reals = and y, one (and only
one) of the following holds: either ¢ < y or y < z. From the geometrical point of
view the relation z < y tells that the point with coordinate  is placed at the left
of the point with coordinate y. Let us also define

‘Lmsy < T <y or =Y.

Clearly, = < y implies z < y. For example the relations 3< T7and 7 <7 are true,
whereas 3 < 2 is not.

The order relation < (or <) interacts with the algebraic operations of sum and
product as follows:

if # < y and z is any real number, then z +2z <y + 2 !

(adding the same real number to both sides of an inequality leaves the latter
unchanged);

z>0, then zz <yz, I
}
i

ifa <y and if{
z< 0, then zz >yz

(multiplying by a non-negative number both sides of an inequality does not alter if,
while if the number is negative it inverts the inequality). Example: multiplying by
_1 the inequality —3 < 2 gives —2 < 3. The latter property implies the well-known
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sign rule: the product of two numbers with alike signs is positive, the product of
two numbers of different sign is negative.

Absolute value. Let us introduce now a simple yet important notion. Given a
real number z, one calls absolute value of z the real number

im[:{:f; itz >0,
—2' ifz <0

Thus |z| > 0 for any z in R. For instance 5] =5, 0] =0, |-5| = 5. Geometrically,
|z| represents the distance from the origin of the point with coordinate z; thus,
|z —y|l= |y - z| is the distance between the two points of coordinates z and y.

The following relations, easy to prove, will be useful

; [z +y| < |z| + lyl, for all z,y € ﬂﬂ (1.1)

(called triangle inequality) and

lzy| = [2llyl,  for all 2,y € R.

Throughout the text we shall solve equations and inequalities involving abso-
lute values. Let us see the simplest ones. According to the definition,

lz| =0
has the unique solution z = 0. If g is any number > 0, the equation
2| = a

has two solutions z = @ and T = —a, 50

v
=
L=y

|zl =a = z = +a, Ya

In order to solve
|z| < a, where a > 0,

consider first the solutions z > 0, for which |z| = =, so that now the inequality
reads z < a; then consider z < 0, in which case |#| = —z, and solve —z < a, or
—a < z. To summarise, the solutions are real numbers satisfying 0 < z < g or
—a < z <0, which may be written in a shorter way as

;[x]Sa — —-ansﬂ (1.2)
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Similarly, it is easy to see that if b > 0,

|z| > b — z<-bor z>0b (1.3)

The slightly more general inequality
|z — zo| < a,

where zg € R is fixed and a > 0, is equivalent to —a < ¢ —zp < a; adding zp gives

|z — 20| <a — zo—a<z<zo+a. (1.4)

In all examples we can replace the symbol < by < and the conclusions hold.

Intervals. The previous discussion shows that Mathematical Analysis often deals
with subsets of R whose elements lie between two fixed numbers. They are called
intervals.

Definition 1.2 Let o and b be real numbers such that a < b. The closed
interval with end-points a, b is the set

[a,b)={zeR|a<z<b}.
If a < b, one defines open interval with end-points a, b the set
(a,b) ={zeR|a<z<b}.

An equivalent notation is |a,bl.

If one includes only one end-point, then the interval with end-points a, b

[a,b)={z€R|a<z<b}

is called half-open on the right, while

(a,b)={zeR|a<z<b}

is half-open on the left.

a b a b

Figure 1.6. Geometric representation of the closed interval [a,b] (left) and of the open
interval (a,b) (right)
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Example 1.3
Describe the set A of elements z € R such that
2< |z <5.
Because of (1.2) and (1.3), we easily have
i A= (-5-2]U[2,5).

Intervals defined by a single inequality are useful, too. Define

[a,+0)={z€eR | a <z}, (a,+)={z€R|a<z},

and

(—o0,b)={zeR |z <b}, (—o0,b) ={z e R | z < b}.

The symbols —co and +oco do not indicate real numbers; they allow to extend
the ordering of the reals with the convention that —oco < z and z < 400 for all
z € R. Otherwise said, the condition a < x is the same as a < z < 400, so the
notation [a,+00) is consistent with the one used for real end-points. Sometimes it
is convenient to set
(—o0,+00) =R.

In general one says that an interval I is closed if it contains its end-points, open
if the end-points are not included. All points of an interval, apart from the end-
points, are called interior points,

Bounded sets. Let us now discuss the notion of boundedness of a set.

Definition 1.4 A subset A of R is called bounded from above if there
exists a real number b such that

T<b, for all z € A.

Any b with this property is called an upper bound of A.
The set A is bounded from below if there is a real number a with

a<uz, for all x € A.

Every a satisfying this relation is said a lower bound of A.
At last, one calls A bounded if it is bounded from above and below.

In terms of intervals, a set is bounded from above if it is contained in an interval
of the sort (—oo, b] with b € R, and bounded if it is contained in an interval [a, b]
for some a,b € R. It is not difficult to show that A is bounded if and only if there
exists a real ¢ > 0 such that

lz| < e, for all z € A.
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Examples 1.5

i) The set N is bounded from below (each number a < 0 is a lower bound), but
not from above: in fact, the so-called Archimedean property holds: for any
real b > 0, there exists a natural number n with

n > b. (1.5)

ii) The interval (—oc,1] is bounded from above, not from below. The interval
(—5,12) is bounded.

iii) The set
123
A—{?lnEN} {U,E,g,z,} (15)

is bounded, in fact 0 < —— < 1 for any n € N.
n+1

iv) The set B = {w E Q | 2% < 2} is bounded. Takmg z such that |z| > 5 for

example, then 22 > 2 > 2, s0 z ¢ B. Thus B C [-3,3]. O

Definition 1.6 A set A C R admits a maximum if an element z; € A
exists such that

T < T, for any x € A.
The element zpr (necessarily unique) is the maximum of the set A and
one denotes it by Tpr = max A,

The minimum of a set A, denoted by & = min A, is defined in a similar
way.

A set admitting a maximum must be bounded from above: the maximum is an
upper bound for the set, actually the smallest of all possible upper bounds, as we
shall prove. The opposite is not true: a set can be bounded from above but not
admit a maximum, like the set A of (1.6). We know already that 1 is an upper
bound for A. Among all upper bounds, 1 is privileged, being the smallest upper
bound. To convince ourselves of this fact, let us show that each real number r < 1
is not an upper bound, i.e., there is a natural number n such that

mn

n+1

1 1 1 l1—17r
i <~ hencel+1<—,0r—<T This

o P

The inequality is equivalent to -

is to say n > I 4 , and the existence of such n follows from property (1.5). So,
—r

1 is the smallest upper bound of A, yet not the maximum, for 1 ¢ A: there is no

natural number n such that T = 1. One calls 1 the supremum, or least upper

n+
bound, of A and writes 1 = sup A.
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Analogously, 2 is the smallest of upper bounds of the interval I = (0,2), but
it does not belong to I. Thus 2 is the supremum, or least upper bound, of I,
=supl.

Definition 1.7 Let A C R be bounded from above. The supremum or least
upper bound of A4 is the smallest of all upper bounds of A, denoted by sup A.
If A C R is bounded from below, one calls infimum or greatest lower
bound of A the largest of all lower bounds of A. This is denoted by inf A.

The number s = sup A is characterised by two conditions:

i) z<sforallzecA; (1.7)
it) for any real r < s, there is an & € A with x > r. :

While 2) tells that s is an upper bound for A, according to i) each number smaller
than s is not an upper bound for A, rendering s the smallest among all upper
bounds.

The two conditions (1.7) must be fulfilled in order to show that a given number
is the supremum of a set. That is precisely what we did to claim that 1 was the
supremum of (1.6).

The notion of supremum generalises that of maximum of a set. It is immediate
to see that if a set admits a maximum, this maximum must be the supremum
as well.

If a set A is not bounded from above, one says that its supremum is +oc, i.e.,
one defines
sup A = +oc.

Similarly, inf A = —occ for a set A not bounded from below.

1.3.2 Completeness of R

The property of completeness of R may be formalised in several equivalent ways.
The reader should have already come across (Dedekind’s) separability aziom: de-
composing R into the union of two disjoint subsets C; and C» (the pair (C1,Cs)
is called a cut) so that each element of C) is smaller or equal than every element
in Cy, there exists a (unique) separating element s € R:

z) < s < 29, Vzi1 € Ch, Voo € Cs.

An alternative formulation of completeness involves the notion of supremum of
a set: every bounded set from above admits a supremum in R, i.e., there is a real
number smaller or equal than all upper bounds of the set.

With the help of this property one can prove, for example, the existence in
R of the square root of 2, hence of a number p (> 0) such that p? = 2. Going
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back to Example 1.5 iv), the completeness of the reals ensures that the bounded
set B = {z € Q | 2% < 2} has a supremum, say p. Using the properties of R it
is possible to show that p* < 2 cannot occur, otherwise p would not be an upper
bound for B, and neither p? > 2 holds, for p would not be the least of all upper
bounds. Thus necessarily p? = 2. Note that B, albeit contained in Q, is not allowed
to have a rational upper bound, because p? = 2 prevents p from being rational
(Property 1.1).

This example explains why the completeness of R lies at the core of the pos-
sibility to solve in R many remarkable equations. We are thinking in particular
about the family of algebraic equations

2 =, (1.8)

where n € Ny and a € R, for which it is worth recalling the following known fact.

Property 1.8 i) Let n € Ny be odd. Then for any a € R equation (1.8) has
ezactly one solution in R, denoted by z = {/a or z = a*/™ and called the nth
root of a.

it) Let n € N be even. For any a > 0 equation (1.8) has two real solutions
with the same absolute value but opposite signs; when a = 0 there is one
solution x = 0 only; for a < 0 there are no solutions in R. The non-negative
solution is indicated by © = 3/a or x = a/", and called the nth (arithmetic)
root of a.

1.4 Factorials and binomial coeflicients

We introduce now some noteworthy integers that play a role in many areas of
Mathematics.

Given a natural number n > 1, the product of all natural numbers between
1 and n goes under the name of factorial of n and is indicated by n! (read ‘n
factorial’). Out of conveniency one sets 0! = 1. Thus

0l =1, Lh=1; nl=1-2-...-on=(Mn-1ln for n>2. (1.9)

Factorials grow extremely rapidly as n increases; for instance 5! = 120, 10! =
3628800 and 100! > 1037,
Example 1.9

Suppose we have n > 2 balls of different colours in a box. In how many ways
can we extract the balls from the box?
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When taking the first ball we are making a choice among the n balls in the box;
the second ball will be chosen among the n — 1 balls left, the third one among
n — 2 and so on. Altogether we have n(n —1)-... 2.1 = n! different ways to
extract the balls: n! represents the number of arrangements of n distinct objects
in a sequence, called permutations of n ordered objects.

If we stop after k extractions, 0 < k < n, we end up with n(nf— 1)...(n—k+1)

possible outcomes. The latter expression, also written as T is the number

n!
(n—k)!
of possible permutations of n distinct objects in sequences of &k objects.
If we allow repeated colours, for instance by reintroducing in the box a ball of
the same colour as the one just extracted, each time we choose among n. After
k > 0 choices there are then n* possible sequences of colours: n* is the number
of permutations of n objects in sequences of k, with repetitions (1e,
allowing an object to be chosen more than once). B

Given two natural numbers n and k such that 0 < k < n, one calls binomial
coefficient the number
! n! [
e 1.1
(k) k{n—k)! | (1.10)

(the symbol (7) is usually read ‘n choose k’). Notice that if 0 < k < n

nl=1-...n=1-...(n=k)(n—k+1)-....(n—1)n = (n—k)!(n—k+1)-...-(n—1)n,

so simplifying and rearranging the order of factors at the numerator, (1.10) be-

comes
n\ nn-1)-...-(n—k+1)
(k) - - , (1.11)

another common expression for the binomial coefficient. From definition (1.10) it
follows directly that

and

@)= ©)=("0)-n

Moreover, it is easy to prove that for any n > 1 and any k with0 < k < n

B=G2D+(") a2

which provides a convenient means for computing binomial coefficients recursively;
the coefficients relative to n objects are easily determined once those involving
n — 1 objects are computed. The same formula suggests to write down binomial
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coefficients in a triangular pattern, known as Pascal’s triangle! (Fig.1.7): each
coefficient of a given row, except for the 1’s on the boundary, is the sum of the two
numbers that lie above it in the preceding row, precisely as (1.12) prescribes. The
construction of Pascal’s triangle shows that the binomial coefficients are natural
numbers.

Figure 1.7. Pascal’s triangle

‘The term ‘binomial coefficient’ originates from the power expansion of the
polynomial a + b in terms of powers of @ and b. The reader will remember the
important identities

(@+b)?=a%>+2ab+b*> and (a+b)®=a®+ 3a%b + 3ab® + b°.

The coefficients showing up are precisely the binomial coefficients for n = 2 and
n = 3. In general, for any n > 0, the formula

n

(a+b)™ =a®+nab+...+ (k

L — (n a‘n.—kbk
> (&)

)a""k‘bk TN 10 77 el g
(1.13)

holds, known as (Newton’s) binomial expansion. This formula is proven with
(1.12) using a proof by induction (see Appendix A.1, p. 428).

Example 1.9 (continuation)

Given n balls of different colours, let us fix k£ with 0 < k& < n. How many different
sets of k balls can we form?
Extracting one ball at a time for k times, we already know that there are
n(n—1)...(n—k+1) outcomes. On the other hand the same k balls, extracted
in a different order, will yield the same set. Since the possible orderings of k
elements are k!, we see that the number of distinct sets of k balls chosen from n
& wn—1)-...-(n—k+1) (n
k! T \k
combinations of n objects taken k at a time. Equivalently, the number of
subsets of k elements of a set of cardinality n.

. This coefficient represents the number of

! Sometimes the denomination Tartaglia’s triangle appears.
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E Formula (1.13) with @ = b = 1 shows that the sum of all binomial coefficients
. with n fixed equals 2", non-incidentally also the total number of subsets of a set
with n elements. '

1.5 Cartesian product

Let X, Y be non-empty sets. Given elements z in X and y in Y, we construct the
ordered pair of numbers
(=),

whose first component is z and second component is y. An ordered pair is concep-
tually other than a set of two elements. As the name says, in an ordered pair the
order of the components is paramount. This is not the case for a set. If « # y the
ordered pairs (z,y) and (y,z) are distinct, while {z,y} and {y,z} coincide as sets.

The set of all ordered pairs (z,y) when x varies in X and y varies in Y is the
Cartesian product of X and Y, which is indicated by X x Y. Mathematically,

{stz{mwlmemyeyyj

The Cartesian product is represented using a rectangle, whose basis corres-
ponds to the set X and whose height is ¥’ (as in Fig.1.8).

If the sets X, Y are different, the product X x ¥’ will not be equal to ¥ x X,
in other words the Cartesian product is not commutative.
But if ¥ = X, it is customary to put X x X = X 2 for brevity. In this case the
subset of X2
A={@y) e X |z=y}

of pairs with equal components is called the diagonal of the Cartesian product.

XxY

E

|
(=)

|

Figure 1.8. Cartesian product of sets
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The most significant example of Cartesian product stems from X =Y = R. The
set R? consists of ordered pairs of real numbers. Just as the set R mathematically
represents a straight line, so R? is a model of the plane (Fig. 1.9, left). In order
to define this correspondence, choose a straight line in the plane and fix on it an
origin O, a positive direction and a length unit. This shall be the z-azis. Rotating
this line counter-clockwise around the origin by 90° generates the y-azis. In this
way we have now an orthonormal frame (we only mention that it is sometimes
useful to consider frames whose axes are not orthogonal, and/or the units on the
axes are different).

Given any point P on the plane, let us draw the straight lines parallel to the
axes passing through the point. Denote by z the real number corresponding to the
intersection of the z-axis with the parallel to the y-axis, and by y the real number
corresponding to the intersection of the y-axis with the parallel to the z-axis. An
ordered pair (z,y) € R? is thus associated to each point P on the plane, and vice
versa. The components of the pair are called (Cartesian) coordinates of P in the
chosen frame.

The notion of Cartesian product can be generalised to the product of more
sets. Given n non-empty sets X, y X2,...,Xn, one considers ordered n—tuples

(Byalayess®n)

where, for every i = 1,2,...,n, each component z; lives in the set X;. The
Cartesian product X; x X5 X ... x X,, is then the set of all such n—tuples.

When X = Xo =... = X, = X one simply writes X x X x...x X = X",
In particular, R® is the set of triples (z,y,2) of real numbers, and represents a
mathematical model of three-dimensional space (Fig. 1.9, right).

Figure 1.9. Models of the plane (left) and of space (right)
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1.6 Relations in the plane

We call Cartesian plane a plane equipped with an orthonormal Cartesian frame
built as above, which we saw can be identified with the product R2,

Every non-empty subset R of R? defines a relation between real numbers;
precisely, one says z is R-related to y, or z s related to y by R, if the ordered
pair (,7) belongs to R. The graph of the relation is the set of points in the plane
whose coordinates belong to R.

A relation is commonly defined by one or more (in)equalities involving the
variables z and y. The subset R is then defined as the set of pairs (z,y) such that
¢ and y satisfy the constraints. Finding R often means determining its graph in
the plane. Let us see some examples.

Examples 1.10
i) An equation like

az + by = ¢,
with a, b constant and not both vanishing, defines a straight line. If b = 0, the line
is parallel to the y-axis, whereas a = 0 yields a parallel to the z-axis. Assuming
b # 0 we can write the equation as

y=mz+q,
where m = —% and ¢ = §. The number m is called slope of the line. The line
can be plotted by finding the coordinates of two points that belong to it, hence
two distinct pairs (z,y) solving the equation. In particular ¢ = 0 (or ¢ = 0) if
and only if the origin belongs to the line. The equation z —y =0 for example
defines the bisectrix of the first and third quadrants of the plane.
ii) Replacing the ‘=" sign by ‘<’ above, consider the inequality

az + by < c.
It defines one of the half-planes in which the straight line of equation az+by = ¢
divides the plane (Fig.1.10). If b > 0 for instance, the half-plane below the line
is obtained. This set is open, i.e., it does not contain the straight line, since the
inequality is strict. The inequality az + by < ¢ defines instead a closed set, i.e.,
including the line.

Figure 1.10. Graph of the relation of Example 1.10 ii)
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iii) The system

y>0,

{x—yzm
defines the intersection between the open half-plane above the z-axis and the
closed half-plane lying below the bisectrix of the first and third quadrants. Thus
the system describes (Fig.1.11, left) the wedge between the positive z-axis and
the bisectrix (the points on the z-axis are excluded).
iv) The inequality

|z —y|l <2
is equivalent, recall (1.2), to

2<s—y<2.
The inequality on the left is in turn equivalent to y < z+2, s0it defines the open
half-plane below the line y =  + 2; similarly, the inequality on the right is the
same as y > z— 2 and defines the open half-plane above the line y = — 2. What
we get is therefore the strip between the two lines, these excluded (Fig.1.11,
right).

v) By Pythagoras’s Theorem, the equation
z? + y2 =1
defines the set of points P in the plane with distance 1 from the origin of the

axes, that is, the circle centred at the origin with radius 1 (in trigonometry it
goes under the name of unit circle). The inequality

2 +y% <1
then defines the disc bounded by the unit circle (Fig. 1.12, left).
vi) The equation

y =21’

yields the parabola with vertical axis, vertex at the origin and passing through
the point P of coordinates (1,1).

y=x+2
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1
-""“-,\\ $2+y2=1 y==z
i [
\ ) .
| )
\\
o

| kS i

=%

Figure 1.12. Graphs of the relations in Examples 1.10 v) (left) and 1.10 vi) (right)

Thus the inequalities
z2 <y<l1

define the region enclosed by the parabola and by the straight line given by y = 1
(Fig. 1.12, right). [

1.7 Exercises

1. Solve the following inequalities:

—1 2r—1 1—Tp

[i)-! z—3 = b) 3$+5>0

&) &—~1 29p—38 =l z+1

Ll s e ) 227> %1

g HLE g B4 £) Va¥—6z>z+2
z+5 T |z —1]

E)I 3<% h) __z+3

Lol (:1':+1)2\/$2

[5 T AT iM_

0] V=4 -2>0 ) = -1>0

2. Describe the following subsets of R:
Bl A={z€R:2®+42+13<0}N{z € R: 322 +5> 0}

b) B={ceR:(z+2)(z-1)(c-5<0}n{zcR: 3”21"0}
(9] c={zer: —:E—5w<0}u{:ce]}a VIZF1+z=17)

d) Dz{zeR:x—dz\/x2—6m+5}u{:reli§:x+2>\/a:—l}
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3. Determine and draw a picture of the following subsets of R2:
B A={@veR >0 b B={@neR i -y50)
. y?
@ C={zv)eR:|y-2z% <1} d) D={(z,y) eRZ:m2+Z >1}
I:T)_[E={(:r,y)eR2:l+my>0} f) F={(z,y) e R? : 2 —y 0}

4. Tell whether the following subsets of R are bounded from above and/or below,
specifying upper and lower bounds, plus maximum and minimum (if existent):

1
A:{zeR:x=n0r$=§,n€N\{U}}
b) B={zeR:-1<z<1orz=20}

c_)E C={z€R:USw<1orz=i?-13

|
d) D={z€eR:z=zywith z,y € R, -1<z<2,-3<y<~-1}

,n €N\ {0, 1}}

1.7.1 Solutions
1. Inequalities:

a) This is a fractional inequality. A fraction is positive if and only if numerator
and denominator have the same sign. As N(z)=2z-1>0ifz > 1/2, and
D(z) =2 —3>0 for z > 3, the inequality holds when z < 1/2 or z > 3.

b) -2 <z<l.

c) Shift all terms to the left and simplify:

z—1 2x-3 —z24+3z-3
= 0, g, e il
2-2 2-3° Y GeE=3)

The roots of the numerator are not real, so N (z) < 0 always. The inequality
thus holds when D(z) < 0, hence 2 < z < 3.

d) Moving terms to one side and simplifying yields:

] z+1 _ lz](2z — 1) — 22 +1
—_— 0, €., 0.
2—1 25—1° 58 c-D2z-1)
Since |z| = z for z > 0 and lz] = —z for & < 0, we study the two cases
separately.

When z > 0 the inequality reads

2:52—:1:—:?:24-1)0 - 22 —z4+1 - B
(z—-1)(2z - 1) ' (z-1)(2z-1) '
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The numerator has no real roots, hence #2 — z + 1 > 0 for all z. Therefore
the inequality is satisfied if the denominator is positive. Taking the constrain
z > 0 into account, this means 0 < z < 1/20rz > 1.

When z < 0 we have

—2m2+x—$2+1>0 . 322+ z+1 il
(@—1)(2z - 1) M onee-n

N(z) is annihilated by z; = 14‘6@ and zp = 1—"‘{"3@, soN(z) >0forz; <z <
z2 (notice that z; < 0 and z, € (3,1)). As above the denominator is positive
when < 1/2 and z > 1. Keeping z < 0 in mind, we have z; < z < (.
The initial inequality is therefore satisfied by any z € (z,, %) U (1, +o00).

e) —5<x5-2,—%5x<1,1<x$5—%@; f) z < -2

g) First of all observe that the right-hand side is always > 0 where defined, hence
when 2% — 2z > 0, i.e., < 0 or z > 2. The inequality is certainly true if the
left-hand side 2 — 3 is < 0, so for z < 3.
If z — 3 > 0, we take squares to obtain

=]

22 —6z+9 <z’- 2, ie., 4z > 9, whence r>

Gathering all information we conclude that the starting inequality holds
wherever it is defined, that is for <0and z > 2.

h) z € [-3,-v3) U (V3, +o0).

i) As |2® — 4| > 0, /[22 — 4] is well defined. Let us write the inequality in the

form
Vg2 -4 >z.

If # < 0 the inequality is always true, for the left-hand side is positive. If z > 0
we square:

2% — 4] > 22.
Note that

'$2_4!={m2—4 ife<-—20rz>2,
-z +4 if 2<z<2.

Consider the case z > 2 first; the inequality becomes z2 — 4 > z?, which is
never true.
Let now 0 < z < 2; then —z% 4+ 4 > g2, hence 22 — 2 < 0. Thus 0 < z < V2
must hold.
In conclusion, the inequality holds for z < /2.

) z € (=2,—v2) U (2, +0).

2. Subsets of R:

a) Because 22 + 4z + 13 = 0 cannot be solved over the reals, the condition
@? + 4z + 13 < 0 is never satisfied and the first set is empty. On the other
hand, 3z% + 5 > 0 holds for every x € R, therefore the second set is the whole
R.Thus A=0NR=0.
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b) B = (—oo0, —2) U (2,5).
¢) We can write '
z? -5z 44 _([z=9(=-1)
z2—-9 (z=38)(x+3)’
whence the first set is (=3,1) U (3,4).
To find the second set, let us solve the irrational equation \/7z + 1+ z = 17,
which we write as /T + 1 = 17—g. The radicand must necessarily be positive,
hence z > —%. Moreover, a Square root is always > 0, so we must impose
17—z >0,ie., z<17. Thus for -—% SEEIT squaring yields

T2+1=(17-2), 2241749880,

The latter equation has two solutions z; = 9, T2 = 32 (which fails the con-

straint ¢ < 17, and as such cannot be considered). The second set then contains
only z =9,

Therefore C = (=3,1) u (3, 4) U {9}.
d) D= [1,4o0).

3. Subsets of R?:
a) The condition holds if z and y have equal signs, thus in the first and third
quadrants including the axes (Fig. 1.13, left).
b) See Fig.1.13, right.
c) We have
2 2
y—z® ify>a?,
m—fh{z .
8-y ify<a?.

Demanding y > 22 means looking at the region in the plane bounded from
below by the parabola y = z2. There, we must have

y—x2<1, ie., y<x2+1,
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2

/\$2+y;=1

< \|/

Figure 1.14. The sets C and D of Exercise 3

that is 2 <y < z? + 1.
Vice versa if y < z?,

2?-y<l1, ie., y>z -1,

hence z? — 1 < y < z2.
Eventually, the required region is confined by (though does not include) the
parabolas y = 22 — 1 and y = 2% + 1 (Fig. 1.14, left).

See Fig. 1.14, right.

For z > 0 the condition 1+ zy > 0 is the same as y > *%‘ Thus we consider
all points of the first and third quadrants above the hyperbola y = —,%_.
Forz < 0,14y > 0 means y < —é, satisfied by the points in the second and
fourth quadrants this time, lying below the hyperbola y = —é.

At last, if z = 0, 1 + zy > 0 holds for any y, implying that the y-axis belongs
to the set E.

Therefore: the region lies between the two branches of the hyperbola (these

are not part of E) y = —1, including the y-axis (Fig. 1.15, left).

See Fig.1.15, right.

Figure 1.15. The sets E and F of Exercise 3
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4. Bounded and unbounded sets:

a) We have 4 = {1,2,3,..., 4,3, &,...}. Since N\ {0} c A, the set A is not
bounded from above, hence sup A = 400 and there is no maximum.
In addition, the fact that every element of A is positive makes A bounded from
below. We claim that 0 is the greatest lower bound of A. In fact, if r > 0 were
a lower bound of 4, then % > for any non-zero n € N. This is the same as
n? < 1 hencen < ‘—/1;; But the last inequality is absurd since natural numbers
are not bounded from above. Finally 0 ¢ A, so we conclude inf 4 = 0 and A
has no minimum.

b) inf B = —1, sup B = max B = 20, and min B does not exist.

) C=[,1u{} § 1,8, }c [0,2); then C is bounded, and inf C = min C =
-3 1

=92 -
. n - - . n e 1
there is no maximum in C.

d) infC = minC = —g, sup B = max B = 3.

0. Since

, it is not hard to show that sup C = 2, although



