Functions

Functions crop up regularly in everyday life (for instance: each student of the
Polytechnic of Turin has a unique identification number), in physics (to each point
of a region in space occupied by a fluid we may associate the velocity of the particle
passing through that point at a given moment), in economy (each working day at
Milan’s stock exchange is tagged with the Mibtel index), and so on.

The mathematical notion of a function subsumes all these situations.

2.1 Definitions and first examples

Let X and Y be two sets. A function f defined on X with values in ¥ is

a correspondence associating to each element z € X at most one element yeY.

This is often shortened to ‘a function from X to Y. A synonym for function is

map. The set of z € X to which f associates an element in Y is the domain of
; the domain is a subset of X, indicated by dom f. One writes

f:'aomfgqu._

If dom f = X, one says that f is defined on X and writes simply f: X — V.
The element y € Y associated to an element z € dom f is called the image of
¢ by or under f and denoted y = f(z). Sometimes one writes

frem fz).

The set of images y = f (z) of all points in the domain constitutes the range of
f.asubset of ¥ indicated by im f. i - .

The graph of f is the subset I'(f) of the Cartesian product X x ¥ made of
pairs (z, f(z)) when z varies in the domain of f, i.e.,

20 = (@ 1) € X7 - zedomr).]
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Cartesian plane R2,

A remarkable special case of map arises when X = N and the domain contains
a set of the type {ne N : n > no} for a certain natural number np 2 0. Such a
function is called sequence. Usually, indicating by ¢ the sequence, it is preferable

Examples 2.1

Let us consider examples of real functions of real variable.

Df:RoR, f(z) =az+b (a,b real coefficients), whose graph is a straight line
(Fig. 2.2, top left).

i) f:R-R, f(z) = z?, whose graph is a parabola (Fig. 2.2, top right).

i) f: R\{0} cR > R, f(z) = 1, has a rectangular hyperbola in the coordinate
system of its asymptotes as graph (Fig. 2.2, bottom left).

iv) A real function of a real variable can be defined by multiple expressions on
different, intervals, in which case is it called a piecewise function. An example
is given by f : 0,3] - R
3z fo<z<i,
He) =« 4—p ifl<z<2, (2.2)
z-1 f2<g<3,

drawn in.Fig. 2.2, bottom right,
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Figure 2.2. Graphs of the maps f(z) = 2z—2 (top left), f(z) = z* (top right), f(z) = :

(bottom left) and of the piecewise function (2.2) (bottom right)

v) the absolute value (Fig. 2.3, top left)

Among piecewise functions, the following are particularly important:

vi) the sign (Fig. 2.3, top right)

T itz 20

R R =lEh= Vg
FRoR f@ =l ={7 "0
+1 ifz >0,
f:RoZ, fle)=sign(z)=4¢ 0 ifz=0,
-1 fz<0;

vii) the integer part (Fig. 2.3, bottom left), also known as floor function,

f:R>Z, f(z)=[z]= the greatest integer < z

(for example, [4] =4, [V2] =1, [~1] = -1, [-2] = —2); notice that
[z] <z <[z]+1, vz € R;

33
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Figure 2.8. Clockwise from top left: graphs of the functions: absolute value, sign, man-
tissa and integer part

viii) the mantissa (Fig. 2.3, bottom right)
fRoOR, f(z)=M(z)=2-—[z]

(the property of the floor function implies 0 < M (z) < 1).

Let us give some examples of sequences now.

ix) The sequence
n

= 2.3
Qn - ( )
is defined for all n > 0. The first few terms read
1 2 - 3
_ = == 1. = ==\, = - = .7 .
ag 'D, a1 D) 05, [24:] 3 06, a3 1 0.75
Its graph is shown in Fig. 2.4 (top left).
x) The sequence
1 ™
Gn (1 - —) (24)
n

is defined for n > 1. The first terms are

4 _ 62
G =2, ay= % =225, a3= % =2.37037, ay= 52- = 2.44140625 .

Fig.2.4 (top right) shows the graph of such sequence.
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Figure 2.4. Clockwise: graphs of the sequences (2.3), (2.4), (2.6), (2.5)

xi) The sequence
a, =n! (25)

associates to each natural number its factorial, defined in (1.9). The graph of
this sequence is shown in Fig.2.4 (bottom left); as the values of the sequence
grow rapidly as n increases, we used different scalings on the coordinate axes.

xii) The sequence

" +1 if n is even,
s { 1 ifnisodd, ™20 (2.6)
has alternating values +1 and —1, according to the parity of n. The graph of the
sequence is shown in Fig. 2.4 (bottom right).

At last, here are two maps defined on R? (functions of two real variables).

xiii) The function
FiR SR, f(z,y) = VaT+3?
maps a generic point P of the plane with coordinates (z,y) to its distance from

the origin.
xiv) The map p "
fiRT =R f(z,y) = (y,7)
associates to a point P the point P’ symmetric to P with respect to the blsectrlx
of the first and third quadrants. 1
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Consider a map from X to Y. One should take care in noting that the symbol
for an element of X (to which one refers as the independent variable) and the
symbol for an element in ¥ (dependent variable), are completely arbitary. What
really determines the function is the way of associating each element of the domain
to its corresponding image. For example, if z,y, z,t are symbols for real numbers,
the expressions y = f(z) = 3z, z = f(y) = 3y, or z = f(t) = 3¢ denote the same
function, namely the one mapping each real number to its triple.

2.2 Range and pre-image

Let A be a subset of X. The image of A under [ is the set

f(A)={f(z) : s A} Cimf

of all the images of elements of A. Notice that f(A) is empty if and only if A
contains no elements of the domain of f. The image f(X) of the whole set X is
the range of f, already denoted by im f.

Let y be any element of Y'; the pre-image of y by f is the set

f'w)={zedomf : f(z) =y}

of elements in X whose image is y. This set is empty precisely when y does not
belong to the range of f. If B is a subset of Y, the pre-image of B under f is
defined as the set

f7YB)={zedomf : f(z) € B},

union of all pre-images of elements of B.

It is easy to check that A C f~!(f(A)) for any subset A of dom f, and
f(f~YB)) =Bnim f C B for any subset B of Y.

Example 2.2

Let f: R — R, f(z) = 2%. The image under f of the interval A = [1,2)] is the
interval B = [1,4]. Yet the pre-image of B under f is the union of the intervals
[-2,—1] and [1, 2], namely, the set

fFiB)={zeR : 1< |z| <2}
(see Fig.2.5).

i

The notions of infimum, supremum, maximum and minimum, introduced in
Sect. 1.3.1, specialise in the case of images of functions.
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y = f(z) y=f(z)

| 2 Ho-L] 1.7 2
g 1 \
f(B)
Figure 2.5. Image (left) and pre-image (right) of an interval relative to the function

f(@) =2

Definition 2.3 Let f be a real map and A a subset of dom f. One calls
supremum of f on A (or in A) the supremum of the image of A under f

sup f(z) = sup f(4) = sup{f(z) | = € 4}.

Then f is bounded from above on A if the set f (A) is bounded from above,
or equivalently, if sup f(z) < +oo.
TEA

S
If sup f(x) is finite and belongs to f(A), then it is the mazimum of this set.
zEA
This number is the maximum value (or simply, the maximum) of f on
A and is denoted by max f(2).

The concepts of infimum and of minimum of f on A are defined similarly.
Eventually, f is said bounded on A if the set f(A) is bounded.

At times, the shorthand notations sup, f, max, f, et c. are used.
The maximum value M = max, f of f on the set A is characterised by the
conditions:

i) M is a value assumed by the function on A4, i.e.,
there exists z)r € A such that f(zy) = M;
ii) M is greater or equal than any other value of the map on A, so
forany z € A, f(z) < M.

Example 2.4
- Consider the function f(z) defined in (2.2). One verifies easily

zlél[g?;]f(:v) 3, zgl[g)r’lmf(mJ 0, xrél[%}f(x) 3 mérfll,s]f(m)

The map does not assume the value 1 anywhere in the interval [1, 3], so there is
no minimum on that set. 0
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2.3 Surjective and injective functions; inverse function

A map with values in Y is called onto if im f =Y. This means that each y € Y
Is the image of one element z € X at least. The term surjective (on Y) has the
same meaning. For instance, f : R = R, f (z) = az + b with a # 0 is surjective
on R, or onto: the real number y is the image of z = Fa;b. On the contrary, the
function f : R —» R, f(z) = 22 is not onto, because its range coincides with the
interval [0, +00).

A function f is called one-to-one (or 1-1) if every y € im f is the image of a
unique element & € dom f. Otherwise put, if Yy = f(z1) = f(z2) for some elements
1, %2 in the domain of £, then necessarily z; = x,. This, in turn, is equivalent to

z1# T2 = flz) # f(z2)

for all 21,25 € dom f (see Fig. 2.6). Again, the term injective may be used. If a
map f is one-to-one, we can associate to each element v in the range the unique z
in the domain with f(z) = y. Such correspondence determines a function defined
on Y and with values in X, called inverse function of f and denoted by the
symbol f~!, Thus

z=f"y) = y=f(a)

(the notation mixes up deliberately the pre-image of y under f with the unique
element this set contains). The inverse function f~! has the image of f as its
domain, and the domain of f as range:

dom f~! =im §, im f~! = dom f.

Figure 2.6. Representation of a one-to-one function and its inverse
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A one-to-one map is therefore invertible; the two notions (injectivity and invert-
ibility) coincide.

What is the link between the graphs of f, defined in (2.1), and of the inverse
function f~!'? One has

P ={(wf'@) €Y xX : yedomf'}
={(f(z),2) €Y x X : z € dom f}.

Therefore, the graph of the inverse map may be obtained from the graph of f by
swapping the components in each pair. For real functions of one real variable, this
corresponds to a reflection in the Cartesian plane with respect to the bisectrix
y =z (see Fig.2.7: a) is reflected into b)). On the other hand, finding the explicit
expression ¢ = f~'(y) of the inverse function could be hard, if possible at all.

Provided that the inverse map in the form z = f~! (y) can be determined, often
one prefers to denote the independent variable (of f~1) by z, and the dependent
variable by y, thus obtaining the expression y = f~!(z). This is merely a change
of notation (see the remark at the end of Sect. 2.1). The procedure allows to draw
the graph of the inverse function in the same frame system of f (see Fig. 2.7, from
b) to ¢)).

p 2 1
Y y=z (y).
y==z
............. ___/?f,f @) dom f
a) T dom f I T b) | ' imfl y
Y  y=fT)
/ Sy=e
im f~! // : ..
c) IClOl'I'lf_"1 ﬁ-"-;:

Figure 2.7. From the graph of a function to the graph of its inverse
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Examples 2.5

i) The function f : R — R, f(z) = az + b is one-to-one for all a # 0 (in fact,
f(@1) = f(z2) = azy =azz = 21 =23). Its inverse is = ) = ya_—b, or
y=f"(z) = =2

a

ii) The map f : R — R, f(z) = 2? is not one-to-one because f(z) = f(—z) for
any real z. Yet if we consider only values > 0 for the independent variable, i.e.,
if we restrict f to the interval [0, +00), then the function becomes 1-1 (in fact,
f(@1) = f(z2) = 2} -2} = (21— 22)(%1 +22) =0 = z; = 25). The inverse
function ¢ = f~'(y) = /7 is also defined on [0, +co). Conventionally one says
that the ‘squaring’ map y = z? has the function ‘square root’ y = \/z for inverse
(on [0,+00)). Notice that the restriction of f to the interval (—oc, 0] is 1-1, too;
the inverse in this case is y = —+/x.

iii) The map f : R — R, f(z) = z® is one-to-one. In fact f(z1) = flz2) =
ai — a3 = (21 — 22) (2} + 2122+ 28) =0 = 2, = 2, since 22 + T120 + 22 =
3(2} + 2% + (21 + 22)% > 0 for any 2, # 2. The inverse function is the ‘cubic
root’ y = ¥z, defined on all R.

As in Example ii) above, if a function f is not injective over the whole domain,
it might be so on a subset A C dom f. The restriction of f to A is the function

JlatA=Y such that fia@) = f(z), VzeA,

and is therefore invertible.

Let f be defined on X with values Y. If f is one-to-one and onto, it is called
a bijection (or bijective function) from X to Y. If so, the inverse map f~! is
defined on Y, and is one-to-one and onto (on X); thus, f~! is a bijection from Y’
to X.

For example, the functions f(z) = az +b (a # 0) and f(z) = z® are bijections
from R to itself. The function f(z) = 22 is a bijection on [0, +00) (i.e., from
[0, 4+00) to [0, +00)).

If f is a bijection between X and Y, the sets X and Y are in bijective cor-
rispondence through f: each element of X is assigned to one and only one element
of Y, and vice versa. The reader should notice that two finite sets (i.e., containing
a finite number of elements) are in bijective correspondence if and only if they
have the same number of elements. On the contrary, an infinite set can correspond
bijectively to a proper subset; the function (sequence) f : N = N, f(n) = 2n, for
example, establishes a bijection between N and the subset of even numbers.

To conclude the section, we would like to mention a significant interpretation
of the notions of 1-1, onto, and bijective maps just introduced. Both in pure Math-
ematics and in applications one is frequently interested in solving a problem, or
an equation, of the form

flz) =y,
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where f is a suitable function between two sets X and Y. The quantity y represents
the datum of the problem, while z stands for the solution to the problem, or the
unknown of the equation. For instance, given the real number v, find the real
number z solution of the algebraic equation

?+2l - Yz =y.

Well, to say that f is an onto function on Y is the same as saying that the problem
or equation of concern admits at least one solution for each given y in Y¥'; asking f
to be 1-1 is equivalent to saying the solution, if it exists at all, is unique. Eventually,
[ bijection from X to Y means that for any given y in Y there is one, and only
one, solution z € X.

2.4 Monotone functions

Let f be a real map of one real variable, and I the domain of f or an interval
contained in the domain. We would like to describe precisely the situation in which
the dependent variable increases or decreases as the independent variable grows.
Examples are the increase in the pressure of a gas inside a sealed container as
we raise its temperature, or the decrease of the level of fuel in the tank as a car
proceeds on a highway. We have the following definition.

Definition 2.6 The function f is increasing on I if, given elements T1, To
in I with x1 < @3, one has f(z1) < f(z2); in symbols

Vz1,29 € 1, 1<y = f(z1) £ f(z2). (2.7)

The function f is strictly increasing on I if

Vay,me € 1, T <z2 = f(z1) < f(z2). (2.8)
y=f(=z) ey
Hladl beossonpnee 7 1 \ V=7
fla) // f(@1) = faz) | \\
el | ,
el E i

Figure 2.8. Strictly increasing (left) and decreasing (right) functions on an interval T
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If a map is strictly increasing then it is increasing as well, hence condition (2.8) is
stronger than (2.7).

The definitions of decreasing and strictly decreasing functions on I are
obtained from the previous definitions by reverting the inequality between f(z1)
and f(zs).

The function f is (strictly) monotone on I if it is either (strictly) increasing
or (strictly) decreasing on I. An interval I where f is monotone is said interval
of monotonicity of f.

Examples 2.7

1) The map f : R — R, f(z) = az + b, is strictly increasing on R for a > 0,
constant on R for @ = 0 (hence increasing as well as decreasing), and strictly
decreasing on R when a < 0.

ii) The map f: R - R, f(z) =22 is strictly increasing on I = [0, +00). Taking
in fact two arbitrary numbers T1, 22 2 0with 21 < 25, we have :cf < z73 < 72
Similarly, f is strictly decreasing on (—co,0]. It is not difficult to check that
all functions of the type Yy = z", with n > 4 even, have the same monotonic
behaviour as f (Fig. 2.9, left).

iii) The function f : R — R, f () = ° strictly increases on R. All functions like
Y = z™ with n odd have analogous behaviour (Fig. 2.9, right).

iv) Referring to Examples 2.1, the maps y = [z] and y = sign(z) are increasing
(though not strictly increasing) on R.

The mantissa y = M (z) of z, instead, is not monotone on R; but it is nevertheles

strictly increasing on each interval [nyn+1),neZ s
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Now to a simple yet crucial result.

Proposition 2.8 If f is strictly monotone on its domain, then f is one-to-
one.

Proof. To fix ideas, let us suppose f is strictly increasing. Given ;, 29 = dom f
with z; = 2, then either z; < 3 or z» < z;. In the former case, using
(2.8) we obtain f(z;) < f(z2), hence f(z;) = f(z2). In the latter case the
same conclusion holds by swapping the roles of z; and z». a

Under the assumption of the above proposition, there exists the inverse function
/! then; one can comfortably check that f~! is also strictly monotone, and in the
same way as f (both are strictly increasing or strictly decreasing). For instance,
the strictly increasing function f : [0, +oc) — [0, +oc), f(z) = 22 has, as inverse,
the strictly increasing function f~! : [0, +00) = [0, +00), f~(z) = /Z.

The logic implication
f is strictly monotone on its domain = [ is one-to-one

cannot be reversed. In other words, a map f may be one-to-one without increasing
strictly on its domain. For instance f : R — R defined by

1
- ifz#£0,
fle)=4 %
0 ifz=0,
is one-to-one, actually bijective on R, but it is not strictly increasing, nor strictly
decreasing or R. We shall return to this issue in Sect. 4.3.

A useful remark is the following. The sum of functions that are similarly mono-
tone (i.e., all increasing or all decreasing) is still a monotone function of the same
kind, and turns out to be strictly monotone if one at least of the summands is.
The map f(z) = z° + z, for instance, is strictly increasing on R, being the sum
of two functions with the same property. According to Proposition 2.8 f is then
invertible; note however that the relation f(z) = y cannot be made explicit in the
form z = f~1(y).

2.5 Composition of functions

Let X,Y, Z be sets. Suppose f is a function from X to YV, and ¢ a function from
Y to Z. We can manifacture a new function s from X to Z by setting

h(z) = g(f(2))- (2.9)

The function h is called composition of f and g, sometimes composite map,
and is indicated by the symbol h = g o f (read ‘g composed (with) f*).




44 2 Functions

Example 2.9

Consider the two real maps y = f(z) =2 — 3 and z = 9(y) = ¥* + 1 of one real
variable. The composition of f and g reads z = h(z) =gof(z) = (z—38)2+1.O0

Bearing in mind definition (2.9), the domain of the composition g o f is de-
termined as follows: in order for z to belong to the domain of go f, f(z) must be
defined, so z must be in the domain of f; moreover, f(z) has to be a element of
the domain of g. Thus

z €domgo f — z€domf and f(z)€ domg.

The domain of g o f is then a subset of the domain of f (see Fig.2.10).

Examples 2.10

i) The domain of f(z) = |:_+% is R\ {1}, while g(y) = /7 is defined on the
interval [0, +00). The domain of g o f(z) = T;zt—ll consists of the z # 1 such

T+2

that Iz 1] 2 0; hence, domgo f = [-2,+00) \ {1}.

ii) Sometimes the composition g o f has an empty domain. This happens for

1
instance for f(z) = T2 (notice f(z) < 1) and g(y) = /5y — 5 (whose domain
is [5, +00)).

Figure 2.10. Representation of a composite function via Venn diagrams.
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The operation of composition is not commutative: if go fand fog are both
defined (for instance, when X =Y = Z), the two composites do not coincide in

H

general. Take for example f(z) = -i~ and g(z) = i%, for which go f(z) =
but fog(z) =1+z.

If f and g are both one-to-one (or both onto, or both bijective), it is not difficult
to verify that go f has the same property. In the first case in particular, the formula

(gof)'=f"og™

l1+z

holds.

Moreover, if f and g are real monotone functions of real variable, g o f too will
be monotone, or better: g o f is increasing if both f and g are either increasing
or decreasing, and decreasing otherwise. Let us prove only one of these properties.
Let for example f increase and g decrease; if z; < zp are elements in domgo f,
the monotone behaviour of f implies f(z1) < f(z2); now the monotonicity of g
yields g(f(z1)) = g(f(22)), so g o f is decreasing.

We observe finally that if f is a one-to-one function (and as such it admits
inverse f~1), then

fof(®)=f"'f(z) =2, Vzedomf,
fof7@W)=ff"®) =y, VYyecimf.

Calling identity map on a set X the function idy : X — X such that dyx(z) ==
for all z € X, we have f~' o f =iddoms and fo f~! =idn .
2.5.1 Translations, rescalings, reflections

Let f be a real map of one real variable (for instance, the function of Fig.2.11).
Fix a real number ¢ # 0, and denote by t. : R — R the function t.(z) = z + c.
Composing f with ¢, results in a translation of the graph of f: precisely, the

y = f(z)

/

/

- Tr—

Figure 2.11. Graph of a function f(z)
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graph of the function fot,(z) = f(z + ¢) is shifted horizontally with respect to the
graph of f: towards the left if ¢ > 0, to the right if ¢ < 0. Similarly, the graph of
tco f(z) = f(z) +c is translated vertically with respect to the graph of f, towards
the top for ¢ > 0, towards the bottom if ¢ < 0. Fig. 2.12 provides examples of these
situations.

Fix a real number ¢ > 0 and denote by sc : R — R the map s¢(z) = cz. The
composition of f with s. has the effect of rescaling the graph of f. Precisely,
if ¢ > 1 the graph of the function fose(z) = f(cz) is ‘compressed’ horizontally
towards the y-axis, with respect to the graph of f; if 0 < ¢ < 1 instead, the
graph ‘stretches’ away from the y-axis. The analogue effect, though in the vertical
direction, is seen for the function s, o f(z) = cf(z): here ¢ > 1 ‘spreads out’ the

graph away from the z-axis, while 0 < ¢ < 1 ‘squeezes’ it towards the axis, see
Fig. 2.13.

Notice also that the graph of f (—2) is obtained by reflecting the graph of f(z)
along the y-axis, like in front of a mirror. The graph of f(|z|) instead coincides
with that of f for z > 0, and for z < 0 it is the mirror image of the latter with
respect to the vertical axis. At last, the graph of | f(z)| is the same as the graph of
f when f(z) > 0, and is given by reflecting the latter where f(z) < 0, see Fig.2.14.

y=f(?+c],c>0 y=f(z+c), c<0

[ y=f(z)+ec >0

/ y=f(z)+ec c<0

Figure 2.12. Graphs of the functions f(z+¢) (¢ > 0: top left, ¢ < 0: top right), and
f(z) + ¢ (e < 0: bottom left, ¢ > 0: bottom right), where f(z) is the map of Fig. 2.11




2.6 Elementary functions and properties 47

y= flez), e>1 y= flez), c<1

Lt '//

e i

[ y=cf(z), e>1

Sy=et@), o<

7 7

/

Figure 2.13. Graph of f(cz) with ¢ > 1 (top left), 0 < ¢ < 1 (top right), and of cf(z)
with ¢ > 1 (bottom left), 0 < ¢ < 1 (bottom right)

2.6 Elementary functions and properties

We start with a few useful definitions.

Definition 2.11 Let f : dom f CR — R be a map with a symmetric domain
with respect to the origin, hence such that z € dom f forces —x € dom f as
well. The function f is said even if f(—x) = f(z) for all z € dom f, odd if
f(=z) = —f(z) for all z € dom f.

The graph of an even function is symmetric with respect to the y-axis, and that
of an odd map symmetric with respect to the origin. If f is odd and defined in the
origin, necessarily it must vanish at the origin, for f(0) = — £(0).

Definition 2.12 A function f : dom f C R — R is said periodic of period
p (with p > 0 real) if dom f is invariant under translations by +p (i.e., of
zEp € domf for all z € domf) and if f(z +p) = f(z) holds for any
T € dom f.
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y= f(—=) | y= f(=|)

y = (=)l
y = /(=)

Figure 2.14. Clockwise: graph of the functions f(—z), f(|z|), [FCzD], |f()]

One easily sees that an f periodic of period p is also periodic of any multiple
mp (m € N\ {0}) of p. If the smallest period exists, it goes under the name
of minimum period of the function. A constant map is clearly periodic of any
period p > 0 and thus has no minimum period.

Let us review now the main elementary functions.

2.6.1 Powers

These are functions of the form y = z%. The case @ = 0 is trivial, giving rise to the
constant function y = z° = 1. Suppose then & > 0. Fora =n ¢ N\ {0}, we find
the monomial functions y = z™ defined on R, already considered in Example 2.7 ii)
and iii). When n is odd, the maps are odd, strictly increasing on R and with range
R (recall Property 1.8). When n is even, the functions are even, strictly decreasing
on (—o0, 0] and strictly increasing on [0, +0c); their range is the interval [0, +00).

Consider now the case a > 0 rational. If o = L where m € N\ {0}, we define a
function, called mth root of = and denoted y = z'/™ = 7/z, inverting y = z™. It
has domain R if m is odd, [0, +o0) if m is even. The mth root is strictly increasing
and ranges over R or [0, 4+c0), according to whether m is even or odd respectively.

In general, for « = 2 € Q, n,m € N\ {0} with no common divisors, the
function y = z™/™ is defined as y = (z")!/™ = %/z". As such, it has domain R
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Figure 2.15. Graphs of the functions y = 2%/ (left), y = z*/* (middle) and y = /2
(right)

if m is odd, [0,40c) if m is even. It is strictly increasing on [0, +cc) for any n,
m, while if m is odd it strictly increases or decreases on (—oo, 0] according to the
parity of n.

Let us consider some examples (Fig.2.15). The map y = 25/3, defined on R,
is strictly increasing and has range R. The map y = z%/2 is defined on R, strictly
decreases on (—o0, 0] and strictly increases on [0, +occ), which is also its range. To
conclude, y = z%/? is defined only on [0, +00), where it is strictly increasing and
has [0, +c0) as range.

Let us introduce now the generic function y = z® with irrational & > 0. To this
end, note that if a is a non-negative real number we can define the power a® with
a € R \Q, starting from powers with rational exponent and exploiting the density
of rationals inside R. If @ > 1, we can in fact define a® = sup{a™™ | L < a},
while for 0 < a <1 we set a® = inf{a™/™ | 2 < g}. Thus the map y = z* with
a € R4\ Q is defined on [0, +00), and one proves it is there strictly increasing and
its range is [0, 4+00).

Summarising, we have defined y = z® for every value o > 0. They are all
defined a least on [0, 4-00), interval on which they are strictly increasing; moreover,
they satisfy (0) = 0, y(1) = 1. It will turn out useful to remark that if o < B,

O<af <2<, for Ocp<l, T<a®<a? for 251 (2.10)

(see Fig. 2.16).

Figure 2.16. Graphs of y = 2%, z > 0 for some a > 0
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Figure 2.17. Graphs of y = z® for a two values o < 0

1
At last, consider the case of @ < 0. Set y = z® = == by definition. Its

domain coincides with the domain of y = =% minus the origin. All maps are
strictly decreasing on (0, 4+00), while on (—o0, 0) the behaviour is as follows: writing
a = —2- with m odd, the map is strictly increasing if n is even, strictly decreasing
if n is odd, as shown in Fig.2.17. In conclusion, we observe that for every a # 0,
the inverse function of y = z®, where defined, is y = z!/2.

2.6.2 Polynomial and rational functions

A polynomial function, or simply, a polynomial, is a map of the form Pz) =
anZ™ + -+ -+ a1z 4 ap with an # 0; n is the degree of the polynomial. Such a map
is defined over all R; it is even (resp. odd) if and only if all coefficients indexed by
even (odd) subscripts vanish (recall that 0 is an even number).

A rational function is of the kind R(z) = P—(:l, where P and @ are poly-

nomials. If these have no common factor, the domain of the rational function will
be R without the zeroes of the denominator.

2.6.3 Exponential and logarithmic functions

Let @ be a positive real number. According to what we have discussed previously,
the exponential function y = a® is defined for any real number z; it satisfies
y(0) = a® = 1.

If @ > 1, the exponential is strictly increasing; if a = 1, this is the constant
map 1, while if a < 1, the function is strictly decreasing. When a # 1, the range
is (0, +00) (Fig. 2.18). Recalling a few properties of powers is useful at this point:
for any z,y € R

a®tV = g%V, V= — (a®) =a%v.
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Figure 2.18. Graphs of the exponential functions y = 2% (left) and y = (3)7 (right)

When a # 1, the exponential function is strictly monotone on R, hence invertible.
The inverse y = log, « is called logarithm, is defined on (0, +00) and ranges over
R; it satisfies y(1) = log,1 = 0. The logarithm is strictly increasing if a > 1,
strictly decreasing if a < 1 (Fig.2.19). The previous properties translate into the
following;:

Yz,y >0, |

i

|
|
|

log,(zy) = log, = + log, ¥,
log,, -z— =log, ¢ —log,y, Vz,y>0,

log,(z¥) =ylog,z, Vx>0, VyeR.

Figure 2.19. Graphs of y = log, = (left) and y = log, ;, = (right)

2.6.4 Trigonometric functions and inverses

Denote here by X,Y the coordinates on the Cartesian plane R?, and consider the
unit circle, i.e., the circle of unit radius centred at the origin O = (0,0), whose
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equation reads X2 + Y2 = 1, Starting from the point A = (1,0), intersection
of the circle with the positive z-axis, we go around the circle. More precisely,
given any real 2 we denote by P(z) the point on the circle reached by turning
counter-clockwise along an arc of length z if z > 0, or clockwise by an arc of
length —z if z < 0. The point P(z) determines an angle in the plane with vertex
O and delimited by the outbound rays from O through the points A and P(z)
respectively (Fig.2.20). The number & represents the measure of the angle in
radians. The one-radian angle is determined by an arc of length 1. This angle
measures % = 57.2957795 - - - degrees. Table 2.1 provides the correspondence
between degrees and radians for important angles. Henceforth all angles shall be
expressed in radians without further mention.

degrees |( 0| 30 | 45 | 60 | 90 | 120 135 | 150 | 180 | 270 36&

" big o
radians || 0 | = | —

x an | 3n | G« o%
6 14]3

3 |4 |6 | " |2 |*

X
2

Table 2.1. Degrees versus radians

Increasing or decreasing by 27 the length z has the effect of going around the
circle once, counter-clockwise or clockwise respectively, and returning to the initial
point P(z). In other words, there is a periodicity

P(z £ 27) = P(g), Yz eR. (2.11)

Denote by cosz (‘cosine of z’) and sinz (‘sine of z’) the X- and Y-coordinates,
respectively, of the point P(z). Thus P(z) = (cosz,sinz). Hence the cosine func-
tion y = cosz and the sine function Y =sinz are defined on R and assume all

T
(ot

sinx

0 cos T A

Figure 2.20. The unit circle
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Figure 2.21. Graph

of the map y =sinz

values of the interval [—1, 1]; by (2.11), they are periodic maps of minimum period

27, They satisfy the crucial trigonometri

¢ relation

cos?z +sin’z = 15

Vo e R.

(2.12)

It is rather evident from the geomet
is odd, while the cosine function is even.
2.21 and 2.22.

Important values of these maps are lis
integer):

ric interpretation that the sine function
Their graphs are represented in Figures

ted in the following table (where & is any

sine =0 for z=knm,
i m
sinz =1 for :c=§+2k7r,
sinz =—1 for :.c:—-2ﬂ:+2k7r,

cosz=0 for :s=g+k.1r,

cosz=1 for z =2k,

cosz=—1 for . =7+ 2km.

Figure 2.22. Graph

of the map y = cosz
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Concerning monotonicity, one has

strictly increasing on [ - g + 2k, 32'- + Qk'ﬂ‘]

strictly decreasing on [; + 2km, 3—; + 2k'n] ,

y=sing is

strictly decreasing on [2km, 7 + 2k7]
y=cosxT is
strictly increasing on [w + 2km, 27 + 2k).

The addition and subtraction formulas are relevant

sin(a + ) = sin wcos B + cos asin B

cos(a + ) = cosacos B F sin arsin S.

Suitable choices of the arguments allow to infer from these the duplication formulas

sin 2z = 2sinz cos z, cos2z = 2cos’z — 1, (2.13)
rather than
sinm~siny=2sinwﬁyms$;y, (2.14)
COST — COSY = —25in¥sin$;y, (2.15)
or the following
sin(z + m) = —sinz, cos(z + ) = —cosz, (2.16)
3 m m :
sin(z + 5) = cosz, cos(z + 5) = —sing. (2.17)

In the light of Sect.2.5.1, the first of (2.17) tells that the graph of the cosine is
obtained by left-translating the sine’s graph by 7/2 (compare Figures 2.21 and
2.22).

The tangent function y = tanz (sometimes y = tgz) and the cotangent
function y = cotanz (also y = ctgz) are defined by

sinz coszT
tanz = s cotanz = — ;
CosSZT sing

Because of (2.16), these maps are periodic of minimum period =, and not 27. The
tangent function is defined on R\ {$ 4+ kn : k € Z}, it is strictly increasing on the
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Figure 2.23. Graphs of the functions y = tanz (left) and y = cotanz (right)

intervals (—7 +km, § +km) where it assumes every real number as value. Similarly,
the cotangent function is defined on R \ {km : k € Z}, is strictly decreasing on
the intervals (km, 7 + kn), on which it assumes every real value. Both maps are
odd. Their respective graphs are found in Fig. 2.23.

Recall that tanz expresses geometrically the Y-coordinate of the intersection
point Q(z) between the ray from the origin through P(z) and the vertical line
containing A (Fig. 2.20).

The trigonometric functions, being periodic, cannot be invertible on their whole
domains. In order to invert them, one has to restrict to a maximal interval of strict
monotonicity; in each case one such interval is chosen.

The map y = sinz is strictly increasing on [=%, %] The inverse function on

this particular interval is called inverse sine or arcsine and denoted y = arcsing

il

SIE

=1 0 1

Figure 2.24. Graphs of y = arcsin z (left) and y = arccos z (right)
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or y = asing; it is defined on [-1, 1], everywhere strictly increasing and ranging
over the interval [-%, Z]. This function is odd (Fig. 2.24, left).

Similarly, the function y = cosz is strictly decreasing on the interval [0,7]. By
restricting it to this interval one can define the inverse cosine, or arccosine,
Y = arccosz or y = acosz on [—1,1], which is everywhere strictly decreasing and
has [0, 7] for range (Fig. 2.24, right).

The function y = tanz is strictly increasing on (—%, %). There, the inverse
is called inverse tangent, or arctangent, and denoted y = arctanz or y =
atanz (also arctg z). It is strictly increasing on its entire domain R, and has range
(=%, %)- Also this is an odd map (Fig.2.25, left).

In the analogous way the inverse cotangent, or arccotangent, y = arccotanz
Is the inverse of the cotangent on (0, 7) (Fig. 2.25, right).

Figure 2.25. Graphs of y = arctanz (left) and y = arccotanz (right)

2.7 Exercises

1. Determine the domains of the following functions:

3z+1 ] Va2 -3z —4

) IO = s 0] s =5
1
ifz >0,
c) f(z)=log(z® —z) Ld] fla) = { 2z +1
evztl  ifz <0
2. Determine the range of the following functions:
1
9] /@) = 50 )] (@) = va+2-1
logz w1,
c) f(z)=e*>*+3 d) f(z) = {
) Fe) ) 12) —2z-5 ifz<l

Find domain and range for the map f(z) = \/cosz — 1 and plot its graph.
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E Let f(z) = —log(z — 1); determine f~'([0, +o0)) and FH{(~o0,-1)).

5. Sketch the graph of the following functions indicating the possible symmetries

and/or periodicity:
a) f(z)=+v1-|z| b) f(z) =1+ cos2z
) :
C) f(z)-_—tan(w_’.z) d) f(ﬁ:):{m —z—1 lfﬂ:S]—!
2 —T chigre. i |

6. Using the map f(x) in Fig. 2.26, draw the graphs of
f(:&‘) -1, f(m = 3)! f($ = 1): _f(:c)v f(_z)i |f($)l

’_’ﬂ Check that the function f : R — R defined by f(z) = 2® — 2z + 5 is not
invertible. Determine suitable invertible restrictions of f and write down the
inverses explicitly.

E Determine the largest interval I where the map

fl@) =z -2| - |z| +2

is invertible, and plot a graph. Write the expression of the inverse function of
f restricted to I.

’E Verify that f(z) = (1+ 3z)(2z — |z — 1|), defined on [0, +00), is one-to-one.
Determine its range and inverse function.

10. Let f and g be the functions below. Write the expressions for go f, fog, and
determine the composites’ domains.

E' flz)=2>-3 and g(z)=log(l + z)

b)) flz)= % and g(z)=v2-—=z

— -

l/\
\/53 |
=] |

Figure 2.26. Graph of the function f in Exercise 6
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2eT 41

11. Write h(z) = ——— as composition of the map f(z) = e® with some other
e +2

function.

12.] Given f(z) = 22 =3z +2 and 9(z) = «® — 5z + 6, find the expressions
and graphs of

h(z) = min(f(z), g(z)) and  k(z) = max(h(z),0).

2.7.1 Solutions

1. Domains:
a) dom f =R\ {-3,2}.

b) The conditions 2> — 3z —4 > 0 and z + 5 # 0 are necessary. The first is
tantamount to (z + 1)(z —4) > 0, hence & € (—o0, —1] U [4, +00); the second
to z # —5. The domain of f is then

dom f = (—00, —5) U (-5, ~1] U [4, +00).

¢) dom f = (—o0,0) U (1,+0c0).

d) In order to study the domain of this piecewise function, we treat the cases
z 2 0, z < 0 separately.
For z > 0, we must impose 2z+1 # 0, i.e., 2 # —1. Since —4 < 0, the function
is well defined on z > 0.
For 2 < 0, we must have z + 1 2 0, or z > —1. For negative then, the
function is defined on [—1,0).
All in all, dom f = [~1, +-c0).

2. Ranges:

a) The map y = 22 has range [0, +00); therefore the range of y = 22 + 1 is
[1,400). Passing to reciprocals, the given function ranges over (0, 1].

b) The map is obtained by translating the elementary function y = /z (whose
range is [0, +0c)) to the left by —2 (vielding y = v/z + 2) and then downwards
by 1 (which gives y = v/z +2 — 1). The graph is visualised in Fig.2.27, and
clearly im f = [—1, +00).

Alternatively, one can observe that 0 < v/z £ 2 < 400 implies —1 < \/z +2—
1 < 400, whence im f = [-1, 4-00).

im f

S

Figure 2.27. Graph of y = v/z +2 — 1
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¢) imf= (0, +00); d) im f = (-7, +0).

3. Imposing cosz — 1 2 0 tells that cosz > 1. Such constraint is true only for

T = 2k, k € Z, where the cosine equals 1; thus dom f = {zeR:z=2kn ke Z}
and im f = {0}. Fig. 2.28 provides the graph.

—61r  —dx —9r 0] 2r 4w 6w
Figure 2.28. Graph of ¥ =+cosz — 1

4770, +00)) = (1,2] and f~1((o0, —1]) = [e+1, +o0).

5. Graphs and symmetries/periodicity:

a) The function is even, not periodic and its
b) The map is even and periodic of period
¢) This function is odd and periodic with

d) The function has no sy
(bottom right).

graph is shown in Fig. 2,29 (top left).
7, with graph in Fig. 2.29 (top right).

period 7, see Fig. 2.29 (bottom left).

mmetries nor a periodic behaviour, as shown in Fig.2.29

-1 0 1

Figure 2.29. Graphs relative

to Exercises 5.a) (top left), 5.b) (top right), 5.¢) (bottom
left) and 5.d) (bottom right)
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flz)-1 / flz+3) flz-1)

=3 0 .5
: 0 '3
Figure 2.30. Graphs of Exercise 6

6. See Fig. 2.30.

7. The function represents a parabola with vertex (1,4), and as such it is not
invertible on R, not being one-to-one (e.g., F(0) = f(2) = 5). But restricted to the
intervals (—oco, 1] and [1,40c) separately, it becomes invertible. Setting

h= fi(~00,1] ¢ (—00,1] = [4,+0c) , F2= fin,+e0) 1 [1, +00) = [4, +00),
We can compute
It [4, +00) — (—o0,1] , it [4,400) = (1, 400)
explicitly. In fact, from 22 — 2z + 5 — ¥ = 0 we obtain
z=1+ \/m
With the ranges of fitand f;'in mind, swapping the variables z, v yields

ffl($)=1—\/93~4, () =1+vz—4.
8. Since

2 ifz<o,
f(m):{\/él—-% L= <9,
0 it 2,

the required interval I is [0,2], and the graph of f is shown in Fig. 2.31.

In addition £([0,2]) = [0,2], so f~! : [0,2] — [0,2]. By putting y = /A= 9% we
2

obtain z = 9-_53’—, which implies f~!(z) =2 — 122,
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0 ] 2
Figure 2.31. Graph of y=+/lz-2| - |z]+2

9. We have
922 —1 f0<z<1,

3zl +4zx+1 ifz>1

-

and the graph of f is in Fig.2.32.
The range of f is [—1,+00). To determine f~1 we discuss the cases 0<z<1and
Z > 1 separately. For 0 < ¢ <1, we have —1 < y < 8 and

1
y=9z%-1 — T= y_:’-__
Forz > 1, we have y > 8 and
—24+/
y=332+4m+1 s :——4-—3—%—1.
8 L____
1

o7

Figure 2.32. Graph of y = (1+432)(2z — |z — 1])
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Thus
z+1
=4V 9
-2+ 3z +1
3

if -1 <z <8,

ifz > 8.

10. Composite functions:
a) As go f(z) = g(f(2)) = g(z® — 3) = log(1 + 2% — 3) = log(z? — 2), it follows
domgof={z€eR:z 2> 0} = (—00, —v2) U (V2, +0).
)

We have f o g(z) = f(g(x)) = f(log(1 +z)) = (log(1 + z))% — 3, s0
domfog={z€R:1+z>0}=(-1,4c).

b) go f(z) = 1223;—5: and  domgo f=(-1,2]

fog(z) = %% and dom f o g = (—00,2].
11. g(z) = iji; and h(z) = go f(z).

12. After drawing the parabolic graphs f(z) and g(z) (Fig. 2.33), one sees that

z?—-3z+4+2 ifz <2,
hMz)=4 ", .
¢ -5z +6 ifz>2,

S S
| 2 3

Figure 2.33. Graphs of the parabolas f(z) = z° — 3z + 2 and glz)=z* -52+6



