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Limits and continuity I

This chapter tackles the limit behaviour of a real sequence or a function of one
real variable, and studies the continuity of such a function.

3.1 Neighbourhoods

The process of defining limits and continuity leads to consider real numbers which
are ‘close’ to a certain real number. In equivalent geometrical jargon, one considers
points on the real line ‘in the proximity’ of a given point. Let us begin by making
mathematical sense of the notion of neighbourhood of a point.

Definition 3.1 Let 5 € R be q point on the real line, and r > 0 a real
number. We call neighbourhood of To of radius r the open and bounded
interval

Ir(zo) = (@0 —r,zo+7) ={z R : |z — @0 < 7}.

Hence, the neighbourhood of 2 of radius 10™!, denoted Ip-1(2), is the set of real
numbers lying between 1.9 and 2.1, these excluded. By understanding the quantity
|z — 20| as the Euclidean distance between the points zp and z, we can then say
that I..(zo) consists of the points on the real line whose distance from zg is less
than r. If we interpret |z — zg| as the tolerance in the approximation of zy by
z, then I,.(zp) becomes the set of real numbers approximating zo with a better
margin of precision than 7.

—_— —_— .
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Figure 3.1. Neighbourhood of =g of radius r
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2.7 Exercises

1 3
Figure 2.34. Graphs of the maps h (left) and k (right) relative to Exercise 12

and the graph of h is that of Fig. 2.34, left.
Proceeding as above,
22 —-3z+2 fzx<i,
kE(z)=< 0 fl<e<d,
22 —5z+6 ifz>3,

and k has a graph as in Fig. 2.34, right.
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66 3 Limits and continuity I

Varying 7 in the set of positive real numbers, while mantaining zy in R fixed,
we obtain a family of neighbourhoods of zo. Each neighbourhood is a proper
subset of any other in the family that has bigger radius, and in turn it contains
all neighbourhoods of lesser radius.

Remark 3.2 The notion of neighbourhood of a point zp € R is nothing but a
particular case of the analogue for a point in the Cartesian product R? (hence the
plane if d = 2, space if d = 3), presented in Definition 8.11.

The upcoming definitions of limit and continuity, based on the idea of neigh-
bourhood, can be stated directly for functions on R4, by considering functions of
one real variable as subcases for d = 1. We prefer to follow a more gradual ap-
proach, so we shall examine first the one-dimensional case. Sect. 8.5 will be devoted
to explaining how all this generalises to several dimensions. ;

It is also convenient to include the case where zg is one of the points +co or —o.

Definition 3.3 For any real a > 0, we call neighbourhood of 400 with
end-point a the open, unbounded interval

Io(+00) = (a, +00).
Similarly, a neighbourhood of —oc with end-point —a will be defined as

I (—00) = (—o0, —a).

L | .
; : =

—00 —a 0 a +o0

Figure 3.2. Neighbourhoods of —oo (left) and +oo (right)

The following convention will be useful in the sequel. We shall say that the
property P(z) holds ‘in a neighbourhood’ of a point ¢ (¢ being a real number zg or
+00, —00) if there is a certain neighbourhood of ¢ such that for each of its points
z, P(z) holds. Colloquially, one also says ‘P(z) holds around ', especially when
the neighbourhood needs not to be specified. For example, the map f(z) =2z —1
is positive in a neighbourhood of zy = 1; in fact, f(z) >0 for any z € I /5(1).

3.2 Limit of a sequence

Consider a real sequence a : n + a,,. We are interested in studying the behaviour of
the values a,, as n increases, and we do so by looking first at a couple of examples.
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Examples 3.4

i) Let a, =

- The first terms of this sequence are presented in Table 3.1. We

see that the values approach 1 as n increases. More precisely, the real number 1
can be approximated as well as we like by a, for n sufficiently large. This clause
is to be understood in the following sense: however small we fix & > 0, from a
certain point n. onwards all values @n approximate 1 with a margin smaller that
E.

_ : . 1
The condition |a, — 1| < ¢, in fact, is tantamount to

<eg le,n+1> g;

n+1

1.
thus defining n. = [EJ and taking any natural number n > Ne, we haven 41 >

[E] +1> = hence |a, — 1| < e. In other words, for every € > 0, there exists an
ne such that
n > n,. = lan — 1] < €.

Looking at the graph of the sequence (Fig. 3.3), one can say that for all n > Tle
the points (n,a,) of the graph lie between the horizontal lines y=1-—¢ and
y=14¢.

T an
T n

0 | 0.00000000000000
1 [2.0000000000000

1 | 0.50000000000000
2 | 2.2500000000000

2 | 0.66666666666667
3 | 2.3703703703704

3 | 0.75000000000000
4 | 2.4414062500000

4 | 0.80000000000000
5 | 2.4883200000000

5 | 0.83333333333333
6 | 2.5216263717421

6 | 0.85714285714286
7 | 2.5464996970407

7 | 0.87500000000000
8 | 2.5657845130503

8 | 0.83883838888889
9 | 2.5811747917132

9 | 0.90000000000000
10 | 2.5937424601000

10 | 0.90909090909090
100 | 2.7048138294215

100 | 0.99009900990099
1000 | 2.7169239322355

1000 | 0.99900099900100
10000 | 2.7181459268244

10000 | 0.99990000999900
100000 | 2.7182682371975

100000 | 0.99999000010000
1000000 | 2.7182804691564

1000000 | 0.99999900000100
10000000 | 2.7182816939804
10000000 | 0.99999990000001 100000000 2.7182817863958

100000000| 0.99999999000000

Table 3.1. Values, estimated to the 14th digit, of the sequences a, = 47 (left) and
an = (1+ L)™ (right)
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...................................

Tie

Figure 3.3. Convergence of the sequence a, = =

ii) The first values of the sequence a,, = [ 1 + %) are shown in Table 3.1. One

could imagine, even expect, that as n increases the values an get closer to a
certain real number, whose decimal expansion starts as 2.718. .. This is actually
the case, and we shall return to this important example later. o

We introduce the notion of converging sequence. For simplicity we shall assume
the sequence is defined on the set {n € N : n > no} for a suitable ny > 0.

Definition 3.5 A sequence a : n ~ a, converges to the limit £ € R (or
converges to £ or has limit £), in symbols

lim a, = ¢,
=00

if for any real number € > 0 there exists an integer ne such that

V¥n > ny, w B = e = <6

Using the language of neighbourhoods, the condition n > n. can be written n €
I (+00), while |a, — €| < & becomes a, € I.(f). Therefore, the definition of
convergence to a limit is equivalent to: for any neighbourhood I.(¢) of £, there
exists a neighbourhood I,,_ (+00) of +00 such that

Yn > no, ne€l, (+0) = a,e€ (0.

Examples 3.6
i) Referring to Example 3.4 i), we can say
=l

lim
n—oo 141
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ii) Let us check that
lim 3_n =
n—oo 2 + 5n?
Given € > 0, we must show
3n
2+ 5n?

for all n greater than a suitable natural number n.. Observing that forn > 1

<€

3n _ 3n 3n 3

T+ baE| TwbnE BRE E
we have

2o [

on 2+ 5n? )
But

-:i<£ — n>i
5n 5¢’

5e

3 ”
so we can sef ne = [ ] a

Let us examine now a different be-
haviour as n increases. Consider for L an
instance the sequence 0 0
a:n e a, =n’ 1 L
2 4
Its first few values are written in Table 3 9
3.2. Not only the values seem not to 4 16
converge to any finite limit £, they are 5 25
not even bounded from above: how- 6 36
ever large we choose a real number 7 49
A > 0, if n is big enough (meaning 8 64
larger than a suitable n,4), a, will be 9 81
bigger than A. In fact, it is sufficient 10 100
to choose n4 = [v/A] and note 100 10000
1000 1000000
n>ng =>n>VA =>n°> A 10000 | 100000000
100000{10000000000

One says that the sequence diverges )
to +o0 when that happens. Table 3.2. Values of an =n

In general the notion of divergent sequence is defined as follows.
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Definition 3.7 The sequence a : n — a, tends to +oco (or diverges to
+00, or has limit +o0), written

lim a, = +0o0,
=00

if for any real A > 0 there exists an na such that

Vn > nop, 10— S P R (3.1)

Using neighbourhoods, one can also say that for any neighbourhood I4(+o0) of
+00, there is a neighbourhood I, , (+00) of 400 satisfying

Yn > ng, n€l,(+0) = a, € I4(+o0).

The definition of

lim a, = -0
n—00

is completely analogous, with the proviso that the implication of (3.1) is changed
to

Vn > no, n>na = lon<—A

Examples 3.8
i) From what we have seen it is clear that

lim n? = +o0.
Mn—od

n
ii) The sequence ap, =0+14+2+...+n = Z k associates to n the sum of the

k=0
natural numbers up to n. To determine the limit we show first of all that
1
Zk ”+ slntl) (3.2)

a relation with several uses in Mathemahcs. For that, note that a, can also be
T

writtena.san=n+(n—1)+...+2+1+0=2(n—k),hence

k=0
TL n
2an_2k+z n—k =Zn:n21=n(n+1),
k=0 k=0 k=0
1 1 2
and the claim follows. Let us verify lim ”(”—;l = 00, Sines E(—"‘%—) > %

we can proceed as in the example above, so for a given A > 0, we may choose

na = [V24] 0
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The previous examples show that some sequences are convergent, other di-
vergent (to +00 or —o0). But if neither of these cases occurs, one says that the
sequence is indeterminate. Such are for instance the sequence a,, = (—1)", which
we have already met, or

2n for n even
a,=(l+(-1)")n= 8
= ( ( )) {0 for n odd.

A sufficient condition to avoid an indeterminate behaviour is monotonicity.
The definitions concerning monotone functions, given in Sect. 2.4, apply to se-
quences, as well, which are nothing but particular functions defined over the nat-
ural numbers. For them they become particularly simple: it will be enough to
compare the values for all pairs of subscripts n, n + 1 belonging to the domain of
the sequence. So, a sequence is monotone increasing if

Yn > no, Gn < Gnti,

the other definitions being analogous. The following result holds.

Theorem 3.9 A monotone sequence a : n +— a, is either convergent or
divergent. Precisely, in case a i$ increasing:

i) if the sequence is bounded from above, i.e., there is an upper bound b € R
such that a, < b for all n > ng, then the sequence converges to the
supremum £ of its image:

lim a, =¢=sup{a, : n2>no};
n—+oo

i) if the sequence is not bounded from above, then it diverges to +oo.

In case the sequence is decreasing, the assertions modify in the obvious way.

Proof. Assume first that {a.} is bounded from above, which is to say that ¢ =
sup {a, : n > ng} € R. Due to conditions (1.7), for any = > 0 there exists
an element a,, such that { — s < a,, < /. As the sequence is monotone,
Gn, < @n, YN > n.; moreover, a, = {, ¥n > ng by definition of the
supremum. Therefore

b—c <oy Cf<clte, VN e,

hence each term a, with » > n. belongs to the neighbourhood of { of
radius =. But this is precisely the meaning of

lim a, =1.

g
Let now { = +oc. Put differently. for anv A > 0 there exists an element
@n, S0 that a,, > A. Monotonicity implies a, > a,, > A, ¥n > nyg. Thus
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every a, with n - n4 belongs to the neighbourhood I4(+) = (4, +x)
of +~, i.e.,

lim a, =+

T+

Example 3.10

Let us go back to Example 3.4 1). The sequence a,, = nl—l-l is strictly increasing,
n n+1

_— ;

n+l n+2

n? 4+ 2n < n? + 2n + 1, which is valid for any n.

Moreover, a, < 1 for all n > 0; actually, 1 is the supremum of the set {a, : n €

N}, as remarked in Sect.1.3.1. Theorem 3.9 recovers the already known result

lim a, = 1. i
N—00

for an, < an+1, ie., is equivalent to n(n + 2) < (n +1)?, hence

The number e
Consider the sequence a,, = (1 + -:;) introduced in Example 3.4 ii). It is possible

to prove that it is a strictly increasing sequence (hence in particular a, > 2 = a; for
any n > 1) and that it is bounded from above (a, < 3 for all n). Thus Theorem 3.9
ensures that the sequence converges to a limit between 2 and 3, which traditionally
is indicated by the symbol e:

fim (1 + %)n = (3.3)

n—0o0

This number, sometimes called Napier’s number or Euler’s number, plays a
role of the foremost importance in Mathematics. It is an irrational number, whose
first decimal digits are

e = 2.71828182845905 - - -

Proofs of the stated properties are given in Appendix A.2.3, p. 437.

The number e is one of the most popular bases for exponentials and logarithms.
The exponential function y = e shall sometimes be denoted by y = expz. The
logarithm in base e is called natural logarithm and denoted by log or In, instead
of log, (for the base-10 logarithm, or decimal logarithm, one uses the capitalised
symbol Log).

3.3 Limits of functions; continuity

Let f be a real function of real variable. We wish to describe the behaviour of
the dependent variable y = f(z) when the independent variable = ‘approaches’ a
certain point zg € R, or one of the points at infinity —oco, +00. We start with the
latter case for conveniency, because we have already studied what sequences do at
infinity.
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3.3.1 Limits at infinity

Suppose f is defined around +o0. In analogy to sequences we have some definitions.

Definition 3.11 The function f tends to the limit ¢ € R for z going to
400, in symbols
lim f(z)=¢,

T—r4-o00

if for any real number £ > 0 there is a real B > 0 such that

Vz € dom f, £>B = |flz)-4 <e. (3.4)

This condition requires that for any neighbourhood 7, (¢) of ¢, there exists a neigh-
bourhood I5(+00) of +c0 such that

Vz € dom f, z€lp(+0) = flz)e I.(0).

Definition 3.12 The function f tends to +oco for z going to +oc, in
symbols

lim f(z) = 40,

T—r+oo

if for each real A > 0 there is a real B > 0 such that

Vz € dom f, ¢>B = f(z)> A (3.5)

For functions tending to —co one should replace f(z) > A by f (z) < —A. The
expression

3, /(8) = 00

means lim |f(z)| = 4+oo.
T—+oo
If f is defined around —090, Definitions 3.11 and 3.12 modify to become defin-
itions of limit (L, finite or infinite) for z going to —00, by changing z > B to
< —-B:

Jm @) =1
At last, by
lim f(a) = L

one intends that f has limit L (finite or not) both for 2 — +00 and z — —09.
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Examples 3.13

i) Let us check that
oy Tt 1
z—=+oo 222 + 1 2’
Given £ > 0, the condition |f(z) — | < € is equivalent to
4z —1
"W—H)
Without loss of generality we assume z > %, so that the absolute value sign can

be removed. Using simple properties of fractions
4z —1 2z 2z 1

L1
R e =,
AT STl m g ot ¥E>g

< £

Thus (3.4) holds for B = max (i, %)

ii) We prove
lim +/z = +oco.

T——+0C

Let A > 0 be fixed. Since \/z > A implies ¢ > A?, putting B = A? fulfills (3.5).
iii) Consider

im
z——oc /1 — T
With € > 0 fixed,
1
= L8
I—

=

. 1 . 1 1 ;
is tantamount to V1 —x > —, that is 1 —z > = orz <1-— —. So taking
[ -

B=max(0,si2—1),we have

< E. 3

z<-B = |

1
Vvi—a
3.3.2 Continuity. Limits at real points

We now investigate the behaviour of the values y = f(z) of a function f when
‘approaches’ a point zo € R. Suppose f is defined in a neighbourhood of o, but
not necessarily at the point zg itself. Two examples will let us capture the essence
of the notions of continuity and finite limit. Fix zop = 0 and consider the real

functions of real variable f(z) = #® + 1, g(z) = z + [1 — 2?] and h(z) = sl
(recall that [2] indicates the integer part of z); their respective graphs, at least in
a neighbourhood of the origin, are presented in Fig. 3.4 and 3.5.

As far as g is concerned, we observe that |z| < 1 implies 0 < 1 —z* < 1 and
g assumes the value 1 only at z = 0; in the neighbourhood of the origin of unit
radius then,
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Figure 3.4. Graphs of f(z) = 2%+ 1 (left) and g(z) = = + [I — %] (right), in a
neighbourhood of the origin

()_{1 ifz=0,
T =\s z+0,

as the picture shows. Note the function h is not defined in the origin.

For each of f and g, let us compare the values at points z near the origin with
the actual value at the origin. The two functions behave rather differently. The
value f(0) = 1 can be approximated as well as we like by any f(z), provided z
is close enough to 0. Precisely, having fixed an (arbitrarily small) ‘error’ € > 0 in
advance, we can make |f(z) — f(0)| smaller than ¢ for all z such that |z — 0| = |z
is smaller than a suitable real § > 0. In fact |f(z) — £(0)| = |2®| = |z|® < € means
|z| < /€, so it is sufficient to choose § = /€. We shall say that the function f is
continuous at the origin.

Figure 3.5. Graph of h(z) = % around the origin



76 3 Limits and continuity I

On the other hand, g(0) = 1 cannot be approximated well by any g(z) with
z close to 0. For instance, let € = % Then |g(z) — g(0)] < € is equivalent to

2 < g(z) < g but all z different from 0 and such that, say, |z| < 3, satisfy

—4 < g(z) = < , in violation to the constraint for g(x). The function g is not
continuous at the origin.

At any rate, we can specify the behaviour of g around 0: for z closer and closer
to 0, yet different from 0, the images g(z) approximate not the value g(0), but
rather £ = 0. In fact, with £ > 0 fixed, if z # 0 satisfies |z| < min(e, 1), then
g(z) = z and |g(z) — €| = |g(z)| = |z| < . We say that g has limit 0 for & going
to 0.

As for the function h, it cannot be continuous at the origin, since comparing
the values h(z), for  near 0, with the value at the origin simply makes no sense,
for the latter is not even defined. Neverthless, the graph allows to ‘conjecture’ that
these values might estimate ¢ = 1 increasingly better, the closer we choose = to
the origin. We are lead to say h has a limit for z going to 0, and this limit is 1.
We shall substantiate this claim later on.

The examples just seen introduce us to the definition of continuity and of
(finite) limit.

Definition 3.14 Let g be a point in the domain of a function f. This func-
tion is called continuous at zp if for any £ > 0 there is a § > 0 such that

Yz € dom f, e —z0| <6 = |f(z)— f(zo)| <e. (3.6)

In neighbourhood-talk: for any neighbourhood I.(f(zo)) of f(zo) there exists a
neighbourhood I5(zg) of zp such that

Yz € dom f, z € Is(zo) = f(z) € I(f(mo)). (3.7)

Definition 3.15 Let f be a function defined on a neighbourhood of zo € R,
except possibly at xo. Then f has limit £ € R (or tends to { or converges
to ¢) for z approaching zg, written

lim f(z) =¢,

T—+Tp

if given any € > 0 there ewvists a 6 > 0 such that

Vz € dom f, D<clz—tal<d = |flg)—9{ <e. (3.8)

Alternatively: for any given neighbourhood I.(£) of £ there is a neighbourhood
I5(zg) of z¢ such that
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£+ €

L—e

Figure 3.6. Definition of finite limit of a function

Vz € dom f, z € Is(zo) \ {mo} = fl=z)e€ (0.

The definition of limit is represented in Fig. 3.6.

Let us compare the notions just seen. To have continuity one looks at the values
f(z) from the point of view of f(zg), whereas for limits these f(z) are compared
to £, which could be different from f(zo), provided f is defined in zg. To test the
limit, moreover, the comparison with z = xg is excluded: requiring 0 < |z — x|
means exactly = # o; on the contrary, the implication (3.6) is obviously true for
I = Ip-.

Let f be defined in a neighbourhood of zg. If f is continuous at zp, then (3.8)
is certainly true with £ = f(=zo); vice versa if f has limit £ = f(zo) for x going to
Tg, then (3.6) holds. Thus the continuity of f at @ is tantamount to

lim f(z) = f(xo). (3.9)

T—Tg

In both definitions, after fixing an arbitrary € > 0, one is asked to find at
least one positive number § (‘there is a ¢”) for which (3.6) or (3.8) holds. If either
implication holds for a certain 4, it will also hold for every ¢’ < §. The definition
does not require to find the biggest possible § satisfying the implication. With this
firmly in mind, testing continuity or verifying a limit can become much simpler.

Returning to the functions f, g, h of the beginning, we can now say that f is
continuous at zg = 0,

lim f(z) =1 = £(0),

whereas g, despite having limit 0 for # — 0, is not continuous:

lim g(z) = 0 # g(0).
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We shall prove in Example 4.6 i) that h admits a limit for  going to 0, and actually
lim h(z) = 1.

The functions g and h suggest the following definition.

Definition 3.16 Let f be defined on a neighbourhood of ®y, excluding the
point zg. If f admits limit £ € R for & approaching xo, and if a) f is defined
in zp but f(zo) # ¢, or b) f is not defined in zy, then we say xp is a (point
of) removable discontinuity for f.

The choice of terminology is justified by the fact that one can modify the function
at zg by defining it in zg, so that to obtain a continuous map at zy. More precisely,

the function @) iz
= z) ifz :
fl@)= { LT
£ if 2 = g,

lim f(z) = lim f(z) =£= f(z0),

T—*+Tq T—*Ip
hence it is continuous at zg.
For the above functions we have §(z) = z in a neighbourhood of the origin,
while

is such that

sinz

}_L (R:J - if z # 0,
1 ifz =0.
. " sinz
In the latter case, we have defined the continuous prolongation of y = -

by assigning the value that renders it continuous at the origin. From now on when
. . sinc - 2 .
referring to the function y = ——, we will always understand it as continuously
:

prolonged in the origin.

Examples 3.17

We show that the main elementary functions are continuous.

i) Let f: R — R, f(z) = az + b and zp € R be given. For any € > 0,
|f(z) — f(zo)| < € if and only if |a| |z — 2| < &. When a = 0, the condition holds

. - . €
for any z € R; if a # 0 instead, it is equivalent to |z — zg| < al’ and we can put
a

0= ﬁ in (3.6). The map f is thus continuous at every zg € R.

ii) The function f : R — R, f(z) = z? is continuous at zo = 2. We shall prove
this fact in two different ways. Given £ > 0, |f(z) — f(2)| < &, or 2% — 4| < ¢,
means

4—e<a®<4+e. (3.10)
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We can suppose € < 4 (for if |f(z) — f(2)| < ¢ for a certain &, the same will
be true for all &' > ¢); as we are looking for z in a neighbourhood of 2, we can
furthermore assume > 0. Under such assumptions (3.10) yields

Vd—e <z <V4+e,
hence
~2-V4-¢e)<z-2<Vad+e-2. (3.11)

This suggests to take § = min(2 — /4 —¢,v/d+¢—2) (= VA +¢ — 2, easy to
verify). If |z — 2| < 4, then (3.11) holds, which was equivalent to |22 — 4| < &.
With a few algebraic computations, this furnishes the greatest § for which the
inequality |22 — 4| < ¢ is true.

We have already said that the largest value of § is not required by the definitions,
so we can also proceed alternatively. Since

2% — 4| = (&~ 2)(a +2)| = |z — 2| [z + 2|,
by restricting z to a neighbourhood of 2 of radius < 1, we will have -1 < z—2 <
I, hence 1 < z < 3. The latter will then give 3 < z + 2 = |z + 2| < 5. Thus
|2? — 4| < 5|z — 2|. (3.12)

To obtain |z? — 4| < ¢ it will suffice to demand |z — 2| < g; since (3.12) holds
when |z — 2| < 1, we can set § = min 1,5) and the condition (3.6) will be
satisfied. The neighbourhood of radius < 1 was arbitrary: we could have chosen
any other sufficiently small neighbourhood and obtain another &, still respecting
the continuity requirement.

Note at last that a similar reasoning tells f is continuous at every zo € R.

iii) We verify that f : R — R, f(z) = sinz is continuous at every zo € R. We
establish first a simple but fundamental inequality.

Lemma 3.18 For any z € R,

|sinz| < |z, (3.13)

with equality holding if and only if z = 0.

Proof. Let us start assuming 0 < = < 3 and look at the right-angled triangle
PHA of Fig. 3.7. The vertical side PH is shorter than the hypotenuse PA,
whose length is in turn less than the length of the arc PA (the shortest
distance between two points is given by the straight line joining them):

PH<PA<PA.

By definition PH =sinz > 0, and PA=z >0 (angles being in radians).
Thus (3.13) is true. The case —5 < z < 0 is treated with the same
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4

sinz

o H A

Figure 3.7. [sinz| < |z

argument observing |sinz| = sin |z| for 0 < |[z' < 5. At last, when |z] > 3
one has |sinz; < 1 < 5 < |z|, ending the proof.

Thanks to (3.13) we can prove that sine is a continuous function. Recalling
formula (2.14),
T — 2 . T+ Xy

sinz —sinzy = 2sin 5 0S T

(3.13) and the fact that |cost| <1 for all ¢ € R, imply
|sinz — sinzg| = 2 Sinx_zxU ‘ E-;%
oy 1= |z — .

Therefore, given an £ > 0, if |z — 2p| < € we have |sinz — sinzg| < &; in other
words, condition (3.6) is satisfied by § = e.

Similarly, formula (2.15) allows to prove g(z) = cos« is continuous at every
zg € R. 0

Definition 3.19 Let I be a subset of dom f. The function f is called con-
tinuous on I (or over I) if f is continuous at every point of I.

We remark that the use of the term ‘map’ (or ‘mapping’) is very different from
author to author; in some books a map is simply a function (we have adopted
this convention), for others the word ‘map’ automatically assumes continuity, so
attention is required when browsing the literature.
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The following result is particularly relevant and will be used many times
without explicit mention. For its proof, see Appendix A.2.2, p. 436.

Proposition 3.20 Al elementary functions (polynomials, rational func-
tions, powers, trigonometric functions, ezponentials and their inverses) are
continuous over their entire domains.

Let us point out that there exists a notion of continuity of a function on a
subset of its domain, that is stronger than the one given in Definition 3.19; it is

called uniform continuity. We refer to Appendix A.3.3, p. 447, for its definition
and main properties.

Now back to limits. A function [ defined in a neighbourhood of T, Tp excluded,
may assume bigger and bigger values as the independent variable = gets closer to
Tp. Consider for example the function

1

flz) = =3

on R\ {3}, and fix an arbitrarily large real number A > 0. Then f(z) > A for all

1
T # o such that |z — 3| < 73 We would like to say that f tends to +oo for o

approaching zo; the precise definition is as follows.

Definition 3.21 Let [ be defined in a neighbourhood of zp € R, except pos-
sibly at zo. The function f has limit +oco (or tends to +co) for z ap-
proaching zg, in symbols

lim f(z) = +o0,
T—xp

if for any A > 0 there is a 6 > 0 such that

Vz € dom f, 0<|z—=m|<d = flz)>A (3.14)

Otherwise said, for any neighbourhood 74(+00) of +00 there exists a neighbour-
hood I5(zg) di zg such that

Yz € dom f, z € Is(zo) \ {z0} = f(z)e I4(+00).

The definition of

atigs! 9= o

follows by changing f(z) > A to flz) < —A.
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One also writes

lim f(z) =00
T—+Ip

to indicate l_i_)m |f(z)| = +o0. For instance the hyperbola f(z) = 1, with graph
T—To

in Fig. 2.2, does not admit limit for x — 0, because on each neighbourhood I(0) of
the origin the function assumes both arbitrarily large positive and negative values
together. On the other hand, |f(z)| tends to +o00 when z nears 0. In fact, for fixed
A>0 "

1
vz € R\ {0}, |$|<Z = |—$—|>A.

o1
Hence lim — = co.
z—0

3.3.3 One-sided limits; points of discontinuity

The previous example shows that a map may have different limit behaviours at
1
the left and right of a point zg. The function f(z) = - Brows indefinitely as x

takes positive values tending to 0; at the same time it becomes smaller as  goes
to 0 assuming negative values. Consider the graph of the mantissa y = M(z) (see
Fig. 2.3, p. 34) on a neighbourhood of zp = 1 of radius < 1. Then

T ife <1,
z—1 ifz>1.

M(m)={

When z approaches 1, M tends to 0 if z takes values > 1 (i.e., at the right of 1),
and tends to 1 if 2 assumes values < 1 (at the left).

The notions of right-hand limit and left-hand limit (or simply right limit and
left limit) arise from the need to understand these cases. For that, we define right
neighbourhood of zy of radius 7 > 0 the bounded half-open interval

Ij(mg):[ﬁ?o,xg-l-?‘):{j:ER 0z -39 (T'}.

The left neighbourhood of zy of radius r > 0 will be, similarly,

I7(z0) = (o —rmo) ={z€R : 0<mp—x <7}

Substituting the condition 0 < |z — x| < 0 (ie., z € Is(zo) \ {zo}) with 0 <
z—1xp < 0 (ie., z € I (z0) \ {z0}) in Definitions 3.15 and 3.21 produces the
corresponding definitions for right limit of f for z tending to zp, otherwise
said limit of f for z approaching zp from the right or limit on the right;
such will be denoted by

lim+ f(z).

T—Ig
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For a finite limit, this reads as follows.

Definition 3.22 Let f be defined on a right neighbourhood of zop € R, except
possibly at zo. The function f has right limit £ € R for & — 2, if for every
g > 0 there is a 6 > 0 such that

Vz € dom f, O<z—z0<d = |f(z)-¢<e

Alternatively, for any neighbourhood I, (£) di £ there exists a right neighbourhood
I (z0) of zp such that

Yz € dom f, z € If(zo) \{ze} = [f(z)e L(2).

The notion of continuity on the right is analogous.

Definition 3.23 A function f defined on a right neighbourhood of o € R is
called continuous on the right at zy (or right-continuous) if

lim f(z) = f(zo)-

T—Ty

If a function is only defined on a right neighbourhood of g, right-continuity co-
incides with the earlier Definition (3.6). The function f(z) = /z for example is
defined on [0, +0), and is continuous at 0.

Limits of f from the left and left-continuity are completely similar: now one
has to use left neighbourhoods of zg; the left limit shall be denoted by

lim f(z).

Tz

The following easy-to-prove property provides a handy criterion to study limits
and continuity.

Proposition 3.24 Let f be defined in a neighbourhood of zo € R, with the
possible exception of ©o. The function f has limit L (finite or infinite) for
@ — xo if and only if the right and left limits of f, for x — xo, exist and
equal L.

A function f defined in a neighbourhood of o is continuous at xo if and only
if it is continuous on the right and on the left at zo.
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Returning to the previous examples, it is not hard to see

.1 I |
lim — = +o0; lim — =-o0
z—0+ T z—0- T
and
lim M(z) =0 lim M(z) =1.
z—1+ z—1"

Note M (1) =0, so lir?+ M (z) = M(1). All this means the function M (z) is con-
rT—

tinuous on the right at zg = 1 (but not left-continuous, hence neither continuous,

at o = 1).

Definition 3.25 Let f be defined on a neighbourhood of zo € R, except pos-
sibly at xo. If the left and right limits of f for x going to xg are different, we
say that zp is a (point of) discontinuity of the first kind (or a jump
point) for f. The gap value of f at zp is the difference

[floz.= Iim+ flz) — lim f(z).

Tz TTg
Thus the mantissa has a gap = —1 at g = 1 and, in general, at each point
g =n € Z.
Also the floor function y = [z] jumps, at each zo = n € Z, with gap = 1, for
lim [z] = n; lim [z] =n—1.
z—nt T—n—

The sign function y = sign (z) has a jump point at zp = 0, with gap = 2:

lim si = 1 lim si =—1,
Jim, sign (z) Jim sign (z)

Definition 3.26 A discontinuity point which is not removable, nor of the
first kind is said of the second kind.

This occurs for instance when f does not admit limit (neither on the left nor
on the right) for z — . The function f(z) = sin 2 has no limit for z — 0 (see
Fig. 3.8 and the explanation in Remark 4.19).

3.3.4 Limits of monotone functions

Monotonicity affects the possible limit behaviour of a map, as the following results
explain.
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1

|
~J

Figure 3.8. Graph of f(z) = sin 2

Theorem 3.27 Let f be a monotone function defined on a Tight neighbour-
hood I*(c) of the point c (where ¢ is real or —oo), possibly without the point
c itself. Then the right limat for © — c exists (finite or infinite), and precisely

{inf{f{x) cgeIt(c), z>c} if f is increasing,

lim f(z) =
- sup{f(z):z € IT(c),z>c} #fis decreasing.

T—¥C

In the same way, f monotone on a left neighbourhood I~ (c)\{c} of ¢ (c real
or +0o0) satisfies

@ {sup{f(a:) czel~(c),z<c} iff isincreasing,
T =

inf{f(z) :z €I (c),z< ¢} if f is decreasing.

Proof. We shall prove that if f increases in the right neighbourhood I *(c) of ¢
then

z].m;)rf{:::) —inf{f(z) :z = I*(c), 2> c}t.

The other cases are similar.
Let ¢ = inf{f(z) : v € [*(c), e > c} = R. The infimum is characterised,
in analogy with (1.7), by:
i) forallz < It(c)\ {c}; f(=) = 45
ii) for any = > 0, there eists an element .. < IT(c)\{c} such that
flz:) < b+e.
By monotonicity we have

fl@) < fla.), veeIt(@\{cz<2e,
therefore
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f—s<t<L flz)<t+=, ve e It(e) \ {c}, z < z-.

So, each f(z) belongs to the neighbourhood of { of radius = if = c is in
the right neighbourhood of ¢ with supremum .. Thus we have

Jim f(a) =
Let now { = — ~; this means that for any A > 0 there is an z4 = I (c) \
{c} such that f(za) < —A. Using monotonicity again we obtain flz) =
f(za) < —A, vz © I*(c)\ {c} and & < za. Hence f(z) belongs to the
neighbourhood of —x with supremum —A provided = = c is in the right
neighbourhood of ¢ of supremum 4. We conclude

lim f(z)=—=<.

z—ct

A straightforward consequence is that a monotone function can have only a

discontinuity of the first kind.

Corollary 3.28 Let f be monotone on a neighbourhood I(zo) of zo € R.
Then the right and left limits for x — zo ezist and are finite. More precisely,

i) if f is increasing

1) if f is decreasing

lim f(z) < f(zo) £ lm f(=z);

T—zg Ty

lim f(@) > f(zo) > lim, f(z).

Ty Ty

Proof. Let f be increasing. Then for all z < I(zo) with < o, f(z) < f(zo).

The above theorem guarantees that

lim f(z) =sup{f(z):z < I(zo), ¢ < o} < f(Z0)-

:r—-xu
Similarly, for z < I(zg) with > zo,

flzo) < inf{f(z): z = I(w0), > B0} = lim+ f(=),

Tz >zg

from which i) follows. The second implication is alike.



3.4 Exercises 87

3.4 Exercises

1. Using the definition prove that
2

lirf n! = 400 lim i = —00
n—+00

n—+oo 1 — 2n

1
: 2 — i _ =
J1:1_}1111(2x +3)=5 d) z1_1:121i -y +o0
e) I PO, | f lim 2 = -
,,,_i‘f‘m,/xz_l_ ) g—+o0l —g OC

Let f(z) = sign (z* — z). Discuss the existence of the limits
lim f(z) and lim f(x)

z—0 z—1

and study the function’s continuity.

3. Determine the values of the real parameter o for which the following maps are
continuous on their respective domains:

asin(z+ %) ifz>0, {39‘““‘ ifz>1,
= b .
@f(:c) {2x2+3 ifz <0 ) @) z+2 ifz<l

3.4.1 Solutions
1. Limits:

a) Let areal number A > 0 be given; it is sufficient to choose any natural number
n4 > A and notice that if n > ng4 then

nl=nn—-1)--2-1>n>ny > A.

Thus lim n!=+oo.
n—r+0c

b) Fix areal A > 0 and note 17—‘:‘1 < —Ais the same as % > A. Forn > 1, that

means n’—2An+A > 0. If we consider a natural number ny > A+ VAA+1),
the inequality holds for all n > n4.

¢) Fix € > 0 and study the condition |f(z) — £ < e:
22% +3—5|=2]z® —1| = 2]z — 1| [z +1| <.

Without loss of generality we assume z belongs to the neighbourhood of 1 of
radius 1, i.e., .



