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Limits and continuity II

The study of limits continues with the discussion of tools that facilitate compu-
tations and avoid having to resort to the definition each time. We introduce the
notion of indeterminate form, and infer some remarkable limits. The last part of
the chapter is devoted to continuous functions on real intervals.

4.1 Theorems on limits

A bit of notation to begin with: the symbol ¢ will denote any of zg, :c'o", Ty
400, —00, 0o introduced previously. Correspondingly, I(c) will be a neighbourhood
I5(z0) of zo € R of radius 4, a right neighbourhood 7 ;’ (7o), a left neighbourhood
I (o), @ neighbourhood I5(+400) of +o0o with end-point B > 0, a neighbourhood
Ip(—00) of —co with end-point —B, or a neighbourhood Ip(c0) = Ig(—o0) U
Ig(+00) of co.

We shall suppose from now on f, g, h, ... are functions defined on a neighbour-
hood of ¢ with the point ¢ deleted, unless otherwise stated. In accordance with the
meaning of ¢, the expression lim f(z) will stand for the limit of f for z — 2o € R,

T—*C

the right or left limit, the limit for z tending to +o0, —oo, or for |z| — +oco.
4.1.1 Uniqueness and sign of the limit

We start with the uniqueness of a limit, which justifies having so far said ‘the limit
of f’, in place of ‘a limit of f’.
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—1<gz—1<1, whence 0<z<2 and l<z+l=|z+1]<3.

Therefore
|22% +3 — 5| < 2- 3|z — 1| = 6|z — 1].

The expression on the right is < ¢ if |z — 1| < §. It will be enough to set
§ = min(1, £) to prove the claim.

2. Since 2% —z > 0 when z < 0 or z > 1, the function f(z) is thus defined:
1 fz<0andz>1,
flz)=<0 ifz=0andz=1,
-1 if0<z<1l.
So f is constant on the intervals (—o0,0), (0,1), (1,+o0) and

Jp f@)=1 i fe)=-,
Im f@)=-1,  lim f@o)=1.

The required limits do not exist. The function is continuous on all R with the
exception of the jump points z =0 and z = 1.

3. Continuity:

a) The domain of f is R and the function is continuous for z # 0, irrespective of
c. As for the continuity at = = 0, observe that

lim f(z)= lim (22°+38)=3=/(0),

w
Ii = li i =) =a.
Jim, f(z) Jim, asin(z + 2) a

These imply f is continuous also in ¢ =0 if a = 3.
b) a=1.
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£ Y4

! ! } - = Y

f—c¢ f+e ¢ —¢ £ +¢

Figure 4.1. The neighbourhoods of £, ¢ of radius € < 1|£ — £'| are disjoint

Proof. We assume there exist two limits /' = / and infer a contradiction. We
consider only the case where / and (' are both finite, for the other situations
can be easily deduced adapting the same argument. First of all, since £’ = (
there exist disjoint neighbourhoods I() of ¢ and I({') of 4

I(Hn I(#" = (4.1)

To see this fact, it is enough to consider neighbourhoods of radius - smaller
or equal than half the distance of £ and ¢, = = 1|t —¢'] (Fig.4.1).
Taking I(/), the hypothesis iizn f(z) = / implies the existence of a neigh-

bourhood I(¢) of ¢ such that
vz = dom f, ze I\ {c} = f(=)eI(0).

Similarly for I(!), from lim f (z) = /' it follows there is I'(c) with

vz = dom f, g ')\ {c} = flz)<I(¥)

The intersection of I(c) and I'(c) is itself a neighbourhood of ¢: it contains
infinitely many points of the domain of f since we assumed f was defined
in a neighbourhood of ¢ (possibly minus c). Therefore if Z © dom f is any
point in the interseetion. different from e,

f(@) e 1(6) 11,

hence the intervals I(¢) and I(*") do have non-empty intersection, contra-
dicting (4.1). 3|

The second property we present concerns the sign of a limit around a point c.

Theorem 4.2 Suppose f admits limit € (finite or infinite) for x — c. If
¢> 0 orf = o0, there exists a neighbourhood I (c) of ¢ such that f is strictly
positive on I(c) \ {c}. A similar assertion holds when £ < 0 or £ = —oo.

Proof. Assume [ is finite, positive, and consider the neighbourhood I.(¢) of £ of
radius = = /2 > 0. According to the definition, there is a neighbourhood
I(c) of c satisfying
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f(=o)

Figure 4.2. Around a limit value, the sign of a map does not change

Ve « dom f, zelle)\{e} = flz)< L)

As I(f) = (5, %) < (0,+<), all values f(z) are positive.
If { = 4oc it sullices to take & neiglibourhood Ta(+x0) = (A4, +x) of+x
(A > 0) and use the corresponding definition of limit.

The next result explains in which sense the implication in Theorem 4.2 can be
‘almost’ reversed.

Corollary 4.3 Assume f admits limit £ (finite or infinite) for = tending to
c. If there is a neighbourhood I(c) of ¢ such that f(z) > 0 in I(c)\ {c}, then
£>0 or # =+o00. A similar assertion holds for a ‘negative’ limit.

Proof. By contradiction, if ¢ = —oc or ¢ < 0, Theorem 4.2 would provide a neigh-
bourhood I'(¢) of ¢ such that f(z) < 0 on I'(c)\ {c}. On the intersection of

I(c) and I'(c) we would then simultaneously have f(z) < 0 and f(z) > 0,
which is not possible.

|

Note that even assuming the stronger inequality f(z) > 0 on I(c), we would
not be able to exclude £ might be zero. For example, the map

_ 2 ifz#£0,
f(x)‘{1 if £ =0,

is strictly positive in every neighbourhood of the origin, yet lin% f(z) =0.
=

4.1.2 Comparison theorems

A few results are known that allow to compare the behaviour of functions, the first
of which generalises the above corollary.
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Corollary 4.4 (First comparison theorem) Let a function f have limit
¢ and a function g limit m (€, m finite or not) for ¢ — c. If there is a
neighbourhood I(c) of ¢ such that f(z) < g(z) in I(c) \ {c}, then £ < m.

Proof. If { = —o¢ or m = +nc there is nothing to prove. Otherwise, consider the
map h(z) = g(z) — f(z). By assumption h(z) > 0 on I(c) \ {c}. Besides,
Theorem 4.10 on the algebra of limits guarantees

lim h(z) = lim g(z) — jIc1_n'%c flz)=m-—1.

The previous corollary applied to h forces m — ¢ > 0, hence the claim. =

We establish now two useful criteria on the existence of limits based on com-
paring a given function with others whose limit is known.

Theorem 4.5 (Second comparison theorem — finite case, also known
as “Squeeze rule”) Let functions f, g and h be given, and assume f and h
have the same finite limit for x — c, precisely

lim f(z) = lim h(z) = £.
T—*C T—3C

If there is a neighbourhood I(c) of ¢ where the three functions are defined
(emcept possibly at ¢) and such that

f(@) < g(z) < h(z), Vzel(c)\{c} (4.2)
then
iiglc_g(a:) =

Proof. We follow the definition of limit for g. Fix a neighbourhood I.(£) of #; by

the hypothesis in_nc f(z) = ¢ we deduce the existence of a neighbourhood
I'(c) of ¢ such that
vz < dom f, zel'(e)\{e} = [f(=)e I(0).
The condition f(z) ¢ I.(¢) can be written as |f(z) — (| < ¢, or
t—e< flx)< (= (4.3)

recalling (1.4). Similarly, lim h(z) = ¢ implies there is a neighbourhood
r—c
I"(c) of ¢ such that
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y = h(z)
y=g(z)
£
y=f(z)
T
Figure 4.3. The squeeze rule
vz = dom h, g\ {e} = (—:c< Mz) <4z (4.4)

Define then I'"(c) = I(c) " I'(¢) = I(c). On I"(c) \ {c} the constraints
(4.2), (4.3) and (4.4) all hold, hence in particular

zel()\{c} = ¢-:< f(z) <g(z) < h(z) < £ +-.
This means g(z) ¢ 1.(¢), concluding the proof. 0

Examples 4.6

i) Let us prove the fundamental limit

sing
lim =1, (4.5)
=0
sing | sin(—z —sinz  sing .
Observe first that y = is even, for (sc ) = = . It is thus
— —x
sin
sufficient to consider a positive z tending to 0, i.e., prove that lir(r)l+ —w—w =1
L=

Recalling (3.13), for all z > 0 we have sinz < z, or 208 o 1. To find a
z

lower bound, suppose ¢ < 7 and consider points on the unit circle: let A have

coordinates (1,0), P coordinates (cosz,sinz) and let @ be defined by (1, tan z)

(Fig. 4.4). The circular sector OAP is a proper subset of the triangle OAQ, so

Area OAP < Area OAQ.
Since

OA- A sl Area OAQ = A2-AQ _ tanz

A_rea OAP = 2 !

o8
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! )

O A

Figure 4.4. The sector OAP is properly contained in OAQ

it follows

x sinz . sinz
ie., COST < ——.
T

2 " 2cosz’
Eventually, on 0 < z < § one has

sinz
cosz < — < 1.
T

The continuity of the cosine ensures ]irgJr cosz = 1. Now the claim follows from
r—

the Second comparison theorem.

ii) We would like to study how the function g(z) = 0% behaves for z tending
&
to +o00. Remember that
—1<sinz <1 (4.6)

for any real z. Dividing by z > 0 will not alter the inequalities, so in every
neighbourhood I4(+0c0) of +oo

¥
Now set f(z) = —= h(z) = % and note liI_Il_l 9—1: = 0. By the previous theorem

The latter example is part of a more general result which we state next (and
both are consequences of Theorem 4.5).
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Corollary 4.7 Let f be a bounded function around c, i.e., there exist a
neighbourhood I(c) and a constant C > 0 such that

[f(z)] £ C, Vz e I(c)\ {c}. 4.7
Let g be such that
lim g(z) = 0.
T—C

Then it follows
lim f(z)g(z) = 0.

Proof. By definition ].il'{l g(z) = 0 if and only if lim |g(z)| = 0, and (4.7) implies
Z—C T—c

0= f(2)g(z)l < Clg(z)l, vaeI(e)\{c}
The claim follows by applying Theorem 4.5. o

Theorem 4.8 (Second comparison theorem — infinite case) Let f, g be
given functions and
lim f(z) = +co.

T—C

If there ezists a neighbourhood I(c) of c, where both functions are defined
(except possibly at ¢), such that

flz) <g(@), VYzel(d))\{c}, (4.8)
then
ii_r{t g(z) = +o0

A result of the same kind for f holds when the limit of g is —o0

Proof. The proof is, with the necessary changes, like that of Theorem 4.5, hence
left to the reader. o

Example 4.9

Compute the limit of g(z) = = + sinz when z — +o0. Using (4.6) we have
r—1<gz+singz, Vz € R.
Set f(z) = = — 1; since lil;{im f(z) = +o0, the theorem tells us

Iﬂr_ir_lm{x +sinz) = +o0.
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4.1.3 Algebra of limits. Indeterminate forms of algebraic type

This section is devoted to the interaction of limits with the algebraic operations

of

sum, difference, product and quotient of functions.
First though, we must extend arithmetic operations to treat the symbols +o0

and —cc. Let us set:

+00+4 s =400 (ifse Rors=+c)
—00+ 8=~ (ifseRors=—cx)
+00 -8 = *oo (if s >0o0r s =+oc)
+00 -8 = Foo (ifs<0ors=—c0)
3?:100 (if s > 0)
f-si'fzzpoo (if s < 0)
%=oo (if se R\ {0} or s = +o0)
=g (if s € R)
oo &

Instead, the following expressions are not defined

clo

+o00 + (F00), +00 — (£00), t00 - 0, —

A result of the foremost importance comes next.

Theorem 4.10 Suppose f admits limit £ (finite or infinite) and g admits
limit m (finite or infinite) for x — c. Then

im ((2) £ g(a) = t£m,

provided the right-hand-side expressions make sense. (In the last case one
assumes g(z) # 0 on some I(c)\{c}.)
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Proof. We shall prove two relations only, referring the reader to Appendix A.2.1,
p. 433, for the ones left behind. The first we concentrate upon is

lim (£(z) +g() =/ +m

when [ and m are finite. Fix ¢ > 0, and consider the neighbourhood of !
of radius £/2. By assumption there is a neighbourhood I'(¢) of ¢ such that

vz ¢ dom f, zel'(g\{e} = If(z)-¢<z/2
For the same reason there is also an I'(c) with
Yz ¢ domg, zeIl’(\{c} = |g(z)—m|<:z/2.

Put I(c) = I'(c) 11 I"(c). Then if z < dom f 7 dom g belongs to I(c) \ {c},
both inequalities hold; the triangle inequality (1.1) yields

(F(@) +9(2)) = ((+m)| = |(f(2) = ) + (g(a) -m)|
< f@) - d+lgle) —ml < 5 + 5 ==,
proving the assertion.

The second relation is
lim (f(z) g(z)) = +oc

with { = 4oc and m > 0 finite. For a given real A > 0, consider the
neighbourhood of +o¢ with end-point B = 24/m > 0. We know there is
a neighbourhood I’(¢) such that

vz < dom f, zel'(g\{e} = Flz)>B.

On the other hand, considering the neighbourhood of m of radius m/2,
there exists an I"'(c) such that

Yz < dom g, T = I’{C) \ {CJL = !g{:c) = ml & m/2,

ie, m/2 < g(z) < 3m/2. Set I(c) =I'(c) " I"(c). If z < dom f :domg is
in I(c) \ {c}, the previous relations will be both fulfilled, whence

f(z) g(z) > f(z) —?;3 > B% = A

Corollary 4.11 If f and g are continuous maps at a point zo € R, then also
f(z) £ g(z), f(z)g(z) and % (provided g(zo) # 0) are continuous at zg.
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Proof. The condition that f and g are continuous at zg is equivalent to 11m f(z) =
f(z0) and 11m g(z) = g(zo) (recall (3.9)). The previous theorem allows

to conclude

Corollary 4.12 Rational functions are continuous on their domain. In par-
ticular, polynomials are continuous on R.

Proof. We verified in Example 3.17, part i), that the constants y = @ and the
linear function y = z are continuous on R. Consequently, maps like y = az™
(n © N) are continuous. But then so are polynomials, being sums of the
latter. Rational functions, as quotients of polynomials, inherit the property
wherever the denommator does not vanish. ]

Examples 4.13

i) Calculate

. 2z —3cosz

lim ——= = ¢,

z—0 5+ zsinz
The continuity of numerator and denominator descends from algebraic oper-
ations on continuous maps, and the denominator is not zero at z = 0. The
substitution of 0 to = produces £ = —3/5.

ii) Discuss the limit behaviour of y = tanz when z — Z. Since

lim sinz = sin = 1, and Ilm COST = COS LA 0,
r— % 2 z— I 3 2
the above theorem tells

sinz 1
llm tanz = lim = — = oo.
T3 z—Z COST 0

But one can be more precise by looking at the sign of the tangent around 5. Since
sinz > 0 in a neighbourhood of %, while cosz > 0 (< 0) in a left (resp. right)
neighbourhood of Z, it follows

hm tanT = Feo.
Z:—P-E

iii) Let R(z) = gg; be rational and reduced, meaning the polynomials P, Q
have no common factor. Call zo € R a zero of Q, i.e., a point such that Q(zo) = 0.
Clearly P(x) # 0, otherwise P and @ would be both divisible by (z —zg). Then

lim R(z) =

T—+Ig
follows. In this case too, the sign of R(z) around of zy retains some information.
2?2 -3z +1
22 —
negative on a right neighbourhood, so

For instance, y = is positive on a left neighbourhood of zy = 1 and
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. 22—3z+1
lim ————— = Foo.
z1t 32 —g
-2
In contrast, the function y = R negative in a whole neighbourhood
22 —-2x+1

of 2o = 1, hence
&—2

il—»ml 2 _2z+1

Theorem 4.10 gives no indication about the limit behaviour of an algebraic
expression in three cases, listed below. The expressions in question are called in-
determinate forms of algebraic type.

i) Consider f(z)+g(z) (resp. f(z)—g(z)) when both f, g tend to oo with different
(resp. same) signs. This gives rise to the indeterminate form denoted by the
symbol

00 — 0.

ii) The product f(z)g(z), when one function tends to oo and the other to 0, is
the indeterminate form with symbol

oo 0.

f(z)

iii) Relatively to pur in case both functions tend to oo or 0, the indeterminate

forms are denoted with
0o 0
- or 5

In presence of an indeterminate form, the limit behaviour cannot be told a
priori, and there are examples for each possible limit: infinite, finite non-zero, zero,
even non-existing limit. Every indeterminate form should be treated singularly and
requires often a lot of attention.

Later we shall find the actual limit behaviour of many important indeterminate
forms. With those and this section’s theorems we will discuss more complicated in-
determinate forms. Additional tools to analyse this behaviour will be provided fur-
ther on: they are the local comparison of functions by means of the Landau symbols
(Sect.5.1), de 'Hopital’s Theorem (Sect. 6.11), the Taylor expansion (Sect.7.1).

Examples 4.14

i) Let z tend to +oc and define functions fi(z) = 2422, fo(z) =z +1, fa(z) =
x4+ %, fa(z) = z+sinz. Set g(z) = z. Using Theorem 4.10, or Example 4.9, one

verifies easily that all maps tend to 4+o00. One has
5 _ - . 2 -
A [fi(e) ~a(o)] =_lim_o* = +oo,

SR iel sl = i 1=1,

lim [fas(z)—g(z)] = lim Ly 0,

T3+0o =0 T
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whereas the limit of f4(z) — g(z) = sinz does not exist: the function sinz is
periodic and assumes each value between —1 and 1 infinitely many times as
T — +00.

ii) Consider now z — 0. Let f(z) = a3, fa(z) = 22, f3(z) = «, fa(z) = 2®sin 1,
and g(z) = z2. All functions converge to 0 (for f4 apply Corollary 4.7). Now

iy B . i
z—0 g(ﬁ,") xz—0
lim f2(z) = l=1,
z—0 g(x) =0
lim fs(@) =1l l = 00,
-0 g(z) 0
fa(z) .1 — .
but —g—(a = sin — does not admit limit for z — 0 (Remark 4.19 furnishes a
T

proof of this).

iii) Let us consider a polynomial

P($)=Gn$n+---+al$+aﬂ (QH%O)
for # — +o0o. A function of this sort can give rise to an indeterminate form
00 — o0 according to the coefficients’ signs and the degree of the monomials

involved. The problem is sorted by factoring out the leading term (monomial of
maximal degree) z™

P(x)zz“(an+a';l+...+ 21 aﬂ)-

pn—1 + :,,.I?

The part in brackets converges to a, when z — +o00, 50

lim P(z)= lim a,z" =0
z—tos T—rtoo

The sign of the limit is easily found. For instance,
lim (-52°+22”+7) = lim (—52%) = 4o0.
T——00 ==
Take now a reduced rational function
Ble) = P(z) _ @™+ .. +taiz+a
Q(x) bpa™+...+bz+by
When £ — +o0, an indeterminate form 2 arises. With the same technique as
before,

(@ny bm # 0, m > 0).

o ifn>m,

Pz anx” a . an
()= im —=-" lim g"Mm={ -2 ifp=pn,
z—too Qx) wotoc by,a™ by =+ b

0 ifn<m.
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For example:

3z —2z+1 . 323
m —————— = lim — = -o0,
z—+oc T — 32 T—+oo —2
lim —4z5 4+ 22% -7 = lim —4g° _ 1
zo—oc 8z% — x4 4 5z T zo-co 825 2
6z —z+5 . 622

B =5

T——0oo —ma -

. ; 8!
iv) The function y = —=

becomes indeterminate % for z — 0; we proved in part

i), Examples 4.6 that y converges to 1. From this, we can deduce the behaviour
l—cosz

of g = 5 esT 0, another indeterminate form of the type §. In fact,
. l—cosz .. (L—cosz)(l4+cosz) . 1—cos’z . 1

lim ———— = = lim « lim .

0 g2 220  z2(1 4+ cosz) z—0 2 20 1+ cosz

The fundamental trigonometric equation cos? z + sin® z = 1 together with The-
orem 4.10 gives

. sin’z . sinz\? . sinz 3
lim 5 = lim (| — | ={lim =,
z—=0 T z—0 I+ z—=0 T

The same theorem tells also that the second limit is %, so we conclude

fim l—cosz 1
z—0  x2 = N

With these examples we have taken the chance to look at the behaviour of

elementary functions at the boundary points of their domains. For completeness we
gather the most significant limits relative to the elementary functions of Sect. 2.6,
their proofs may be found in Appendix A.2.2, p. 435.

lim z% = +o00,
T—+00o

lim z%=0,
r—+og

an” + ... + a1z +ap
z—too ba™ 4+ ...+ bz + by

lim a® =400,
T—r=400

lim «* =0,
T—r4o0

m log, z = +00,

T—¥F

lim log,z=—00
T—r+00 ga’ i

lim 2% =0 a>0

lim 2%=400 a<0

— lim ™™™
b 2=+
lim a®* =0 a>1

lim a® =400 a<l

T—— 00

wg]]él.+10ga$= —oa>1

Ilirf)l"_ log,z =+o0a<1
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ligl sinz, lim cosz, lim tanz do not exist
=T oo

o z—too T—too

lim fanz = Foo, VkeZ
ﬂ:—}{%-’-kﬂ)i

: : 7 :

lim arcsinz = +— = arcsin(+1)
T—r 41 2

lim arccosz = 0 = arccos 1, lim arccosz = m = arccos(—1)
z—+1 z——1

. T
lim arctang = +—
T +oc &

4.1.4 Substitution theorem

The so-called Substitution theorem is important in itself for theoretical reasons,
besides providing a very useful method to compute limits.

Theorem 4.15 Suppose a map f admits limit

lim f(z) = ¢, (4.9)

T—c

finite or not. Let g be defined on a neighbourhood of £ (ezcluding possibly the
point £) and such that

i) ifLeR, g is continuous at £;
ii) if £ = +o0 or £ = —oc, the limit lir.r% g(y) ewists, finite or not.
=

Then the composition g o f admits limit for & — ¢ and

lim g(f(z)) = 513} 9(y). (4.10)

Proof. Set m = lim g(y) (noting that under ), m = g(¢) ). Given any neighbour-
vt
hood I(m) of m, by i) or ii) there will be a neighbourhood I (1) of 7 such
that
vy = domg, yeI(t) = g(y)  I(m).
Note that in case i) we can use I(/) instead of I() \ {¢} because gis
continuous at / (recall (3.7)), while / does not belong to I(¢) for case ).

With such I(7), assumption (4.9) implies the existence of a neighbourhood
I(c) of ¢ with

Yz « dom f, zelIe\{e} =+ flz) < I(0).
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Since z ¢ domg o f means z ¢ dom f Plus ¥ = f(z) < dom g the previous
two implications now give

vz < domgs f, z<l(e)\{e} = 9(f(x)) € I(m).

But I(m) was arbitrary, so

lim g(f(a)) = m. .

Remark 4.16 An alternative condition that yields the same conclusion is the
following:

i’) if£ € R, there is a neighbourhood I(c) of ¢ where f (z) # £ for all z # ¢, and
the limit lin}z 9(y) exists, finite or infinite.
Y=

The proof is analogous. r

In case £ € R and g is continuous at £ (case ¢)), then limeg{y) = g(£), so (4.10)
y—
reads

lim g(f(z)) = g( lim f(a)). (4.11)

r—ic

An imprecise but effective way to put (4.11) into words is to say that a continuous
function commutes (exchanges places) with the symbol of limit,.

Theorem 4.15 implies that continuity is inherited by composite functions, as
we discuss hereby.

Corollary 4.17 Let f be continuous at zy, and define yo = f(zo). Let fur-
thermore g be defined around yo and continuous at yy. Then the composite
go f is continuous at Zg.

Proof. From (4.11)

lim (g o f)(z) = g(xl_i_{gu #(2)) = 9(f(=0)) = (g < £)(zo),

T—rxg

which is equivalent to the claim. =

A few practical examples will help us understand how the Substitution theorem
and its corollary are employed.

Examples 4.18

i) The map h(z) = sin(z?) is continuous on R, being the composition of the
continuous functions f(z) = z2? and 9(y) =siny.
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ii) Let us determine

o2
lim sm(;z: )
z—0 T
Set f(z) = 22 and
siny |
= I Y 75 0,
gy)=4q ¥
Then li_% f(z) =0, and we know that g is continuous at the origin. Thus
. 2 .
fi S _ e, S0y g
z=0 g y=0 gy
iii) We study the behaviour of h(z) = arctan (i) around the point 1.
Defining f(z) = x_l_f’ we have lir{1i f(z) = +oo. If we call g(y) = arctany,
: T
ylilzglm g9(y) = :i:—2- (see the Table on page 101). Therefore
li tan : = I (y) = F
Fors- Sl z—1 _yﬂlﬂlzlocgy TS

iv) Determine
lim logsi .
LA logsin —.
Setting f(z) = sin 1 has the effect that £ = EI_’I_I f(z) = 0. Note that f(z) > 0
for allz > 1. With g(y) = logy we have lirngg(y) = —00, 50 Remark 4.16 yields
=

lim lo sinl—Iim (y) = —o0 j
z—r+oo & :B_—y-—m*'gy - ' -

Remark 4.19 Theorem 4.15 extends easily to cover the case where the role of f
is played by a sequence a : n — a,, with limit

lim a, = ¢.

=0
Namely, under the same assumptions on g,
Jim g(an) = ;gr}eg(y)-

This result is often used to disprove the existence of a limit, in that it provides a
Criterion of non-existence for limits: if two sequences a :m > an, b:n s b,
have the same limit ¢ and

lim g(a,) # ILm g(bn),

then g does not admit limit when its argument tends to £.
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For example we can prove, with the aid of the criterion, that y = sinz has no
limit when z — +-o00: define the sequences a, = 2nm and b, = ¥ + 2nm, n € N, so
that

lim sing, = lim 0=0, and at the same time lim sinb, = lim 1= 1.
=00 n—+o0 n—+00 =400
Similarly, the function y = sin % has neither left nor right limit for z — 0. ad

4.2 More fundamental limits. Indeterminate forms of
exponential type

. ; 1y"
Consider the paramount limit (3.3). Instead of the sequence a, = (1 -+ E) , we

look now at the function of real variable
1 T
Bld)= [14.2 ] .
@=(1+ ;)

It is defined when 1 + 1 > 0, hence on (—oo, —1) U (0, +00). The following result
states that h and the sequence resemble each other closely when z tends to infinity.
Its proof is given in Appendix A.2.3, p. 439.

Property 4.20 The following limit holds

1 T
lim (1 - ~) =@
T—¥+tc0 40

By manipulating this formula we achieve a series of new fundamental limits.
The substitution y = 2, with a # 0, gives

T 1 ay 1 v a
lim (1+-‘5) = lim (1+-) =[lim (1+-)] _—
r—rtoo T y—rtoo Yy y—too Y

In terms of the variable y = L then,

1 ¥
lim (1+x)1"" = lim (1+ -) =e.
z—0 y—rtoo y

The continuity of the logarithm together with (4.11) furnish

. log,(14+2) vk : 1z _ _ 4
Jim —#—— = lim log, (1 + @) = log, lim (1+z) —logae—loga

for any @ > 0. In particular, taking a = e:
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i 080+ 2)

=0 @

=1

Note by the way a® — 1 =y is equivalent to z =log,(1 +y), and y — 0 if z — 0.
With this substitution,

.| log, (1 -
[ T R I 7105, )| R, (4.12)
20 g v=0log,(1+y) |y—=0 y
Taking a = e produces
lim e =]
xz—0 A

Eventually, let us set 1+ z = e¥. Since Yy — 0 when ¢ — 0,

1+2)%—1 ay 1 ay _ 1
lim () = lim - = lim g 4
z—0 T y—0 eV — 1 y—0 Y et —1
(4.13)
ayy _
= | (%) 1li ¥ = loge® = «
y—0 Y y—=0e¥ —1
for any o € R.

For the reader’s conveniency, all fundamental limits found so far are gathered
below.

& siny
lim — =1
z—=0 o

. 1—cosz 1
lim ———— —

=0 ;32 5
2 aNT o
dm (142 = @ew

lim(l+z)/* =¢
z—=0

log.(L+z) 1 log(l+z) 1

lim = (a > 0); in particular, lim
z—0 T loga =0 T
e = = : : T 1
lim =loga (a>0); in particular, lim =i
z—0 T z—0 ]

*—1
lim(—li—=a‘ (e € R).

=0 4 14
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x
Let us return to the map h(z) = (1 + %) - By setting fa) = (1 + :%) and

9(z) = z, we can write

h(z) = [f(=)]o@).

In general such an expression may give rise to indeterminate forms for z tending
to a certain ¢, Suppose f, g are functions defined in a neighbourhood of ¢, except,
possibly at ¢, and that they admit limit for 7 — ¢. Assume moreover flz) >0
around ¢, so that h is well defined in a neighbourhood of ¢ (except possibly at c).
To understand it is convenient to use the identity

f(z) = elog f(z)
From this in fact we obtain
h(z) = e9(z)log f(z)

By continuity of the exponential and (4.11), we have

V@I = exp (1im [o(0) log (2)])

T—C

In other words, h(z) can be studied by looking at the exponent g(z) log f(z).
An indeterminate form of the latter wil] thus develop an indeterminate form

of exponential type for h(z). Namely, we might find ourselves in one of these
situations:

i) g tends to 0o and f %01 (so log f tends to 0): the exponent is an indeterminate
form of type oo - 0, whence we say that h presents an indeterminate form of
type

18,
1i) g and f both tend to 0 (so log f tends to —00): once again the exponent is of
type 00 - 0, and the function A is said to have an indeterminate form of type
0°.
iii) g tends to 0 and f tends to +oo (log f — +00): the exponent is of type 00 -0,
and h becomes indeterminate of type

00",
Examples 4.21
; 1\*
i) The map h(z) = (1 -+ E) is an indeterminate form of type 1 when z —

+00, whose limit equals e.

ii) The function h(z) = 2%, for z — 0F, is an indeterminate form of type 0%, We
shall prove in Chap. 6 that lil:g+ zlogz = 0, therefore H1g+ h(z) = 1.
= T
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iii) The function h(z) = z'/* is for # — +00 an indeterminate form of type oo®.
logz

a 5 - . I _ . i .
Substituting y = - and recalling that log y = logy, we obtain a;lir-fl-loc =

—yl_l,%- ylogy =0, hence EETM h(z) = 1. 0

When dealing with A(z) = [f(2)]9(*), a rather common mistake — with tragic
consequences — is to calculate first the limit of f and/or g, substitute the map
with this value and compute the limit of the expression thus obtained. This is to
emphasize that it might be incorrect to calculate the limit for z — ¢ of the
indeterminate form h(z) = [f(z)]9®) by finding first

m= li_r::}z g(z), and from this proceed to lirrt[f(:s)]m.

Equally incorrect might be to determine

lim £9(®), already knowing ¢ = lim f(z).

T—C I—*c

For example, suppose we are asked to find the limit of h(z) = (1 + %) for

T — +o00; we might think of finding first £ = _lirin 1 +£ = 1 and from this

oo

lim 1* = lim 1= 1. This would lead us to believe, wrongly, that h converges

T—toc T—rtoc
to 1, in spite of the fact the correct limit is e.

4.3 Global features of continuous maps

Hitherto the focus has been on several local properties of functions, whether in the
neighbourhood of a real point or a point at infinity, and limits have been discussed
in that respect. Now we turn our attention to continuous functions defined on a
real interval, and establish properties of global nature, i.e., those relative to the
behaviour on the entire domain.

Let us start with a plain definition.

Definition 4.22 A zero of a real-valued function f is a point zo € dom f
at which the function vanishes.

For instance, the zeroes of y = sina are the multiples of 7, i.e., the elements of
the set {mn | m € Z}.

The problem of solving an equation like

flz)=0
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is equivalent to determining the zeroes of the function y = f(z). That is why it
becomes crucial to have methods, both analytical and numerical, that allow to
find the zeroes of a function, or at least their approximate position.

A simple condition to have a zero inside an interval goes as follows.

Theorem 4.23 (Existence of zeroes) Let f be a continuous map on a
closed, bounded interval [a,b]. If f(a)f(b) < 0, i.e., if the images of the end-
points under f have different signs, f admits a zero within the open inter-
val (a,b).

If moreover f is strictly monotone on [a,b], the zero is unique.

f(6)

fla) ;

Figure 4.5. Theorem of existence of zeroes

Proof. Throughout the proof we shall use properties of sequences, for which we
refer to the following Sect. 5.4. Assuming f(a) < 0 < f(b) is not restrictive.
Define ap = a, bp = b and let o = 23¥™ be the middle point of the
interval [ap,bg]. There are three possibilities for f(co). If f(co) = 0, the
point zg = ¢ is a zero and the proof ends. If f(cg) > 0, we set a; = ap and
b1 = cp, so to consider the left half of the original interval. If f(cp) < 0,
let a3 = ¢p, b1 = bp and take the right half of [ag, bp] this time. In either
case we have generated a sub-interval [a;,b1] < [ag, bg] such that

bn —ap
—-—-——-————-2 5

Repeating the procedure we either reach a zero of f after a finite number
of steps, or we build a sequence of nested intervals [an, b,) satisfying:

fla1) <0< f(bi) and b1 —a1 =
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[ao,bg] 3 [al,bl] Fivres [ambn] = sy

flan) <0< f(b,) and b, — An = b_og;ﬂ
(the rigorous proof of the existence of such a sequence relies on the Prin-
ciple of Induction; details are provided in Appendix A.1, p. 429). In this
second situation, we claim that there is a unique point zg belonging to
every interval of the sequence, and this point is a zero of f. For this,
observe that the sequences {a,} and {b,} satisfy

Therefore {a,} is monotone increasing and bounded, while {b,} is mono-
tone decreasing and bounded. By Theorem 3.9 there exist %y, 23 © [a,b]
such that

lim a, =z, and nli{q by =2y

n—x

On the other hand, Example 5.18 i) tells

b—
a3 — g = lim (by —ay) = lim ~—2 =,

nrse QW
so z, = zj. Let ©y denote this number. Since [ is continuous, and using
the Substitution theorem (Theorem 9, p. 138), we have

Jim f(an) = lim f(b.) = f(zo).

But f(an) < 0 < f(b,), so the First comparison theorem (Theorem 4,
p. 137) for {f(a.)} and {f(bn)} gives

nl'l{r} flan) <0 and lim f(b,) > 0.

As 0 < f(zg) < 0, we obtain f(zg) = 0.
In conclusion, if f is strictly monotone on [a,b] it must be injective by
Proposition 2.8, which forces the zero to be unique. N

Some comments on this theorem might prove useful. We remark first that
without the hypothesis of continuity on the closed interval [a,d], the condition
f(a)f(b) < 0 would not be enough to ensure the presence of a zero. The function
f: [0,1]]-R

f(z) = { 1 forz=0,
+1 for0<z<1

takes values of discordant sign at the end-points but never vanishes; it has a jump
point at a = 0.

Secondly, f(a)f(b) < 0 is a sufficient requirement only, and not a necessary one,
to have a zero. The continuous map f(z) = (2z — 1)? vanishes on [0,1] despite
being positive at both ends of the interval.



4.3 Global features of continuous maps 111

Thirdly, the halving procedure used in the proof can be transformed into an al-
gorithm of approximation, known in Numerical Analysis under the name Bisection
method.

A first application of the Theorem of existence of zerges comes next.

Example 4.24

The function f(z) = 2% + 23 — 1 op [0,1] is a polynomial, hence continuous.
As f(0) = —1 and f(1) = 1, f must vanish somewhere on [0,1]. The zero is
unique because the map is strictly increasing (it is sum of the strictly increasin

functions y = 24 and ¥ =23, and of the constant function y = —1). 0

Our theorem can be generalised usefully as follows.

Corollary 4.25 Let [ be continuous on the interval I and suppose it admits
non-zero limits (finite or wnfinite) that are different in sign for z tending to
the end-points of I. Then f has a zero in I , Wwhich is unique if f is strictly
monotone on I. =

Proof. The result isa consequence of Theorems 4.2 and 4.23 (Existence of zeroes).
For more details see Appendix A.3.2, p. 444. g

Example 4.26

Consider the map f(z) = z+logz, defined on J = (0, +00). The functions y=z
and y = logz are continuous and strictly increasing on I, and so is f. Since

lilg:_'_ f(z) = —o0 and lil_,l:l f(z) = +00, f has exactly one zero on its domain.
ey T—+oo ~

e

Corollary 4.27 Consider [ and g continuous maps on the closed bounded
interval [a,b]. If f(a) < 9(a) and f(b) > g(b), there exists at least one point
Zo in the open interval (a,b) with

fl@o) = g(o). (4.14)

Proof. Consider the auxiliary function h(z) = f(z) - g(z), which is continuous in
[a,b] as sum of continuous maps. By assumption, h(a) = f(a) — g(a) <0
and A(b) = f(b) — 9(b) > 0. So, h satisfies the Theorem of existence of
zeroes and admits in (a,b) a point Zo such that h(zo) = 0. But this is
precisely (4.14).

Note that if A is strictly increasing on [a, 8], the solution of (4.14) has to
be unique in the interval. !



112 4 Limits and continuity II

g(a)

f(®) | Y= f(z)

f(a)
9(b) t------

b
Figure 4.6. Illustration of Corollary 4.27

Example 4.28
Solve the equation
cosz = z. (4.15)

For any real z, —1 < cosz < 1, so the equation cannot be solved when z < —1 or
« > 1. Similarly, no solution exists on [-1,0), because cos x is positive while z is
negative on that interval. Therefore the solutions, if any, must hide in [0,1]: there
the functions f(z) = = and g(z) = cosz are continuous and f(0) =0< 1= g(0),
f(1) =1> cosl = g(1) (cosine is 1 only for multiples of 2). The above corollary
implies that equation (4.15) has a solution in (0,1). There can be no other
solution, for f is strictly increasing and g strictly decreasing on [0, 1], making
h(z) = f(z) — g(=) strictly increasing. 0

When one of the functions is a constant, the corollary implies this result.

Theorem 4.29 (Intermediate value theorem) If a function f is continu-
ous on the closed and bounded interval [a,b], it assumes all values between

f(a) and f(b).

Proof. When f(a) = f(b) the statement is trivial, so assume first f(a) < f(b).
Call z an arbitrary value between f(a) and f (b) and define the constant
map g(z) = z. From f(a) < z < f(b) we have f(a) < g(a) and f(b) > g(b).
Corollary 4.27, applied to f and g in the interval [a,b], yields a point zg
in [a, b] such that f(z) = g(zo) = 2.
If f(a) > f(b), we just swap the roles of f and g 0

The Intermediate value theorem has, among its consequences, the remarkable
fact that a continuous function maps intervals to intervals. This is the content of
the next result.
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y = f(z)

I
b

a Tg

Figure 4.7. Intermediate value theorem

Corollary 4.30 Let f be continuous on an interval I. The range f(I) of I
under f is an interval delimited by infy f and sup, f.

Proof. A subset of R is an interval if and only if it contains the interval [a, ] as
subset, for any o < 3.
Let then y; < y» be points of f (I). There exist in I two (necessarily dis-
tinct) pre-images z; and zo, e, f(1) =y, f(z2) = ya. If J < I denotes
the closed interval between z; and T2, we need only to apply the Intermedi-
ate value theorem to f restricted to J, which yields [y1, 2] C f(J) < F(I).
The range f(I) is then an interval, and according to Definition 2.3 its
end-points are inf; f and sup r f. a

Either one of inf; f, sup r f may be finite or infinite, and may or not be an
element of the interval itself. If, say, inf; f belongs to the range, the function
admits minimum on I (and the same for sup; f).

In case I is open or half-open, its image f(I) can be an interval of any kind. Let
us see some examples. Regarding f(z) = sinz on the open bounded I = (-, Z),
the image f(I) = (—1,1) is open and bounded. Yet under the same map, the image
of the open bounded set (0, 27) is [~1,1], bounded but closed. Take now f(z) =
tanz: it maps the bounded interval (=%,%) to the unbounded one (=00, +00).

Simple examples can be built also for unbounded I.

But if I is a closed bounded interval, its image under a continuous map cannot
be anything but a closed bounded interval. More precisely, the following funda-
mental result holds, whose proof is given in Appendix A.3.2, p. 443.
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Theorem 4.31 (Weierstrass) 4 continuous map f on a closed and bounded
interval [a,b] is bounded and admits minimum and mazimum

m = min_f(z) and M = max f(z).

z€[a,b] z€[a,b
Consequently,
f([a,b]) = [m, M]. (4.16)
. S

: y= f(z)
| P4

T Pedstuas % ______ :\.\.T//

a Taf Tm b

Figure 4.8. The Theorem of Weierstrass

In conclusion to this section, we present two results about invertibility (their
proofs may be found in Appendix A.3.2, p. 445). We saw in Sect. 2.4 that a strictly
monotone function is also one-to-one (invertible), and in general the opposite im-
plication does not hold. Nevertheless, when speaking of continuous functions the
notions of strict monotonicity and injectivity coincide. Moreover, the inverse func-
tion is continuous on its domain of definition.

Theorem 4.32 A continuous function f on an interval I is one-to-one if
and only if it is strictly monotone.

Theorem 4.33 Let f be continuous and invertible on an interval I. Then
the inverse f~' is continuous on the interval J = f(I).

Theorem 4.33 guarantees, by the way, the continuity of the inverse trigonomet-
ric functions y = arcsinz, y = arccosz and y = arctanz on their domains, and
of the logarithm y = log,  on R4 as well, as inverse of the exponential y = a®.
These facts were actually already known from Proposition 3.20.
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J=f(D) y=f(z)
¥ I

Figure 4.9. Graph of a continuous invertible map (left) and its inverse (right)

4.4 Exercises

1. Compute the following limits using the Comparison theorems:

. COoSE : ;
a) lim = b) m (v +sinz)
. 2z —sinz : [x]
1 k)
xEIPoo 3z + cosz [d] a:—il-fr-lm T
L. ! . T—tanz
e) ;1_:% sinz - sin - zh_r}% o
2. Determine the limits:
2) i z* — 223 4 52 ) I z+3
zl—r»% 5 — o z=too 23 — 92 4+ §
'__cﬂ " B 4+22 4 Q  lim 2z + 53— 7
z—-ruzloo 222 — g+ 3 z—+tco 52 — 22 4+ 3
i z+1 e vViI0—z—2
s V622 + 3 + 33 z=2 p—2
: . Ttz
© tp (- v B

/922
) Jlm (Vz+1- ¥z-0) Py Y50 8

T——oco 4+ 2

3. Relying on the fundamental limits, compute:

. sin’z . Ttanzg
a) lim b) lim
z—=0 2201 — cosg
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. sin2z —sin 3z 1 .. l—cosyz
@ il—r»% 4z 19 mli%l+ 22
o i tanz —sinz lf) lim cos(tanz) — 1
2 x3 21 =0 tanz
cos Lz sinz —1
g)| lim —2 h)  lim ———
Dz~+1 l1—=z 23 (3 -2)
. . cosz+1 » . V1+tanz — /1 —tanz
b e T
i) oS @ ) sinz
4. Calculate:
log(1 + z) |
8) lm— B e
1 .. logz—1 . g
IC—)J }-‘I-IR! T —e d) xﬂl-ll-loo et —1
P | log z
i ;
9] Jim, = e
. V1+3z-1 =y Tz+1
g) lim ——— | h)] lim ————
z—0 T — o1 Yz 17 -2
5. Compute the limits:
. 2?2 oz fr+1 ] .. ef—e %
3) xETm 25 —1 [E)J }.13}} sinz
ez |
[ )} lim ( cotanz — — d) lim vz (ve+1-vz-1)
1 z=0 sinzT T—r0o
=2
. z-1 . cotanx
Bl L. ($+3) £ i+
. z—5 Al s o—@rT
B Jim Jz— s B)] Jhm g
1 1 i 2
i) lim ( - — ) ‘m lim ze®sin (e'm sin —)
z—0 \ztanz zsinz o+t %
E_)j Jim 2(2 +sing) n) lim_ ze®n®

6. Determine the domain of the functions below and their limit behaviour at the
end-points of the domain:

3 _ .2 3 pr— T
) 1= 525 CFEECS

[0)] f(z) =1log [l-i-exp (ngjln O fe) = Ve
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4.4.1 Solutions

1. Limits:

a) 0; b) +oo.
c) We have _
2z —sinz . w(2—225) 2

lim —m8M8M8 — = =
e 3z + cosz m—ilzlwz(3+ cosz) 3

; i . cos
because lim v = lim £ _ by Corollary 4.7.
E—=—0C0 T T—r=—00 I

d) From [z] < z < [z] + 1 (Example 2.1 vii)) one deduces straightaway z — 1 <
[z] < z, whence

=
L(MSl

T T
for 2 > 0. Therefore, the Second comparison theorem 4.5 gives

im -1,
z—+o0 T
e) 0.
—t
f) First of all f(z) = —————— is an odd map, so lim f(z) = — lim f(z). Let
31 T—0+ z—0-

now 0 <z < %. From
sinz <z < tanz

(see Example 4.6 i) for a proof) it follows

sinz —tanz 2z —tanz

sinz — tanz < z —tanz < 0, that is, 5 < 3 < 0.
z i
Secondly,
. sinz —tanz . sinz(cosz —1) . sinzcosz—1
lim ———— = lim ———— = lim ——— 5,
z—0t T z—0F T“CcosT z—0t COSZ x

Thus the Second comparison theorem 4.5 makes us conclude that

T —tanz

lim =0,

z—0+ z2
therefore the required limit is 0.

2. Limits:
a) —5; b) 0.
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c) Simple algebraic operations give

24224z -
= lim

d) 2.
) Rationalising the denominator we see
_z+l o (z+ 1)(vV622 + 3 — 3z)
622+ 3 — 9.7;2

\/(ix2 343z  soo
(z+1)(v622+3—3z)

PR E

r——1

f) Use the relation @® — 5% = (a — b)(a2 + ab+ b?) in

lim \3/10—:5—2_1i 10—z—8
z=2 -2 =2 (g — 2)(Y/( 10 z)2 4210 —z +4)
1
- Y10 —z) +2\/10 z+4 12
g) 0; h) 1; i) 0.
£) We have

2z2 + 3 ) |5""|\!2+ \/- = V2
==

lim —— = i
x—»moo _,~;4-|- )

z=—cc 4z +2
3. Limits:
a) 0; b) 2.
¢) We manipulate the expression so to obtain a fundamental limit
i sin 2z — sin 3z — g sin 2z i sindz 1 3 1
::—IH) 4z - xl-g}] m-IH) 4 - 2 4
d) We use the cosine’s fundamental limit:
1-— 1 1
lim Bt g/l = lim —%* \/— lim — lim LI = +o0a.
z—0t 252 x—0+ T z—0+ 2:1? 2 z—0+ 253
e) 1.
f) Putting y = tanz and substituting,
cosy —1 ; sy —1
2BV i B,

. cos(tanz) —1 "
lim —(——)— = lim
z—0 tan y—0 Yy
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g) Letting y = 1 — 2 transforms the limit into:

cos Tz cos (1 — sin Z
22 -y DU 0) g BORy_m
z—=1 1 —g y—0 y y=0 gy 2
B ~&; i) 5-
{) One has
. V1+tanz —+/1—tanz ) 1+tanz —1+tanz
lim - = lim —
-0 sinz @=0sinz (/1 +tanz + /1 — tanz)
1. 2tanz . 1
= — lim — = lim =T
220 sing z—0 COST
4. Limits:
1, 2
a) Tog3 > b) 3.

¢) By defining y = z — e we recover a known fundamental limit:
- logz —1 - lim log(y +e) —1 - lim loge (1+y/e) —1

e T —e y—0 y y—=0 Yy

= Tim log(1 +y/e)
y—0 Y

.
==

Another possibility is to set z = z/e:

- - 1
lim logz — 1 - log(ez) — 1 _ llim log z _1
ze T —e z=1 ez —1) ez=1z—1 e
a1,
e) We have
2z 2r
im 2e 1_ lim 2(e 1)+1
=0+ 2z z—0+ 2z
2 _ 1 1
= lim 2 + lim — =2+ lim — = +4oo0.
z—0+ 2z z—0+ 2 z—0+ 23
f) Substitute y =z — 1, so that
log © logz

lim = lim ————
z=le® —e  z—le(e®1—1)

mlosl+y) 1. logl+y) y _1

=0 e —1)  eym0 g -1 e

feie]
—
anles

119
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h) The new variable y = z + 1 allows to recognize (4.13), so

: T+ 1 . y ’ y
im —ou=lim —2%_ — |im— 9
e=-1{z+17—2 y=0 Yy+16—2 y4u2(4/—1+%_1)
16 .. y/16
=—lim ——  =8.4=32.
2 y—0 ,‘1f1+_1%__]_
5. Limits:
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b) We have
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e) Start with

g (22D . l %) log Z— 1
w—rufoc z+3 =R I—}Toc.(x_ )Og$+3

; 4 W .
= exp (x_lir_fr_lm(m— 2) log (1 = —$+3)) =e".

1
» and substitute z = — — 3 at the exponent:
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The required limit equals e—4.
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#) Start by multiplying numerator and denominator by the same function:
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Now put y = L in the first factor to get

in 2
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next, let t = e~ sin % Since t — 0 for  — +o0, by Corollary 4.7, the second
factor is -
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and eventually the limit is 2.
m) The fact that —1 < sinz < 1 implies 1 < 2+sinz < 3, s0 z < z(2 + sinz)
when z > 0. Since liT & = +00, the Second comparison theorem 4.8 gives
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400 for an answer,
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6. Domains and limits:

a) dom f =R\ {-2, -1},

:r—liu—nQi f(.?}‘) =k, z—ljr—nli f(.’»") = Foo, .":—l-{rincof(m) = son,

b) The function is defined on the entire R and
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c) This function makes sense when z # 0 (because 1 + exp (%ﬂ) > 0 for any
non-zero z). As for the limits:
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d) dom f = R; E&I:’E.m flz) =0.



