5

Local comparison of functions. Numerical
sequences and series

In the first part of this chapter we learn how to compare the behaviour of two
functions in the neighbourhood of a point. To this aim, we introduce suitable
symbols — known as Landau symbols — that make the description of the possible
types of behaviour easier. Of particular importance is the comparison between
functions tending to 0 or oco.

In the second part, we revisit some results on limits which we discussed in
general for functions, and adapt them to the case of sequences. We present specific
techniques for the analysis of the limiting behaviour of sequences. At last, numer-
ical series are introduced and the main tools for the study of their convergence are
provided.

5.1 Landau symbols

As customary by now, we denote by c one of the symbols zp (real number), :c[)",
Zy , or 400, —c0. By ‘neighbourhood of ¢’ we intend a neighbourhood — previously
defined — of one of these symbols.

Let f and g be two functions defined in a neighbourhood of ¢, with the possible
exception of the point c itself. Let also g(z) # 0 for = # ¢. Assume the limit

tim 12 _ (5.1)

z—bcm_

exists, finite or not. We introduce the following definition.

s controlled by g for & tending
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- This property 'caﬁ'iﬁé-._made.mqre precise by distinguishing three cases: :
@) If £ is finite and non-zero, we say that f -.hids-'sﬁhé._.s_ame-_érdém of mag- |
nitude as g (or is of the same: order of ‘magnitude) for z ‘tending to -
¢; if so; we write  * : O e : G
; f=gy  @mee
- As sub-case we have: i TR s ST
o) Ife= -;,:.we;ca'll":fj- equivalent to g for.m::t_'._-;nding'to ¢, in this case we use -
 the:ndtation S S G
TR n e e e
¢) ‘Bventually, if £ =0, we say that f is negligible with respect to g when
z'goes to ¢; for this situation the-‘.symbol_.- e ; e

. F=olg); w-ﬁ_c;'

'ﬂ?’iﬂ"bé':uﬂ&edﬁ"Spbf?‘.féﬁf::.‘f’i‘!:l'_s'."_l?l-t'f_-.lé oofg foff ;m-fen;iing toph

Not included in the previous definition is the case in which £ is infinite. But in
such a case "
lim Q_(fl = - Tha 0,

T—c _f(:t:)

S0 we can say that g = o(f) for z — c.

The symbols O, =, ~, o are called Landau symbols.
Remark 5.2 The Landau symbols can be defined under more general assump-
tions than those considered at present, i.e., the mere existence of the limit (5.1).

For instance the expression f = O(9) as  — ¢ could be extended to mean that
there is a constant C' > 0 such that in a suitable neighbourhood I of ¢

|f(z)| < Clg(z), Vzel z+e

The given definition is nevertheless sufficient for our purposes. a
Examples 5.3
i) Keeping in mind Examples 4.6, we have
; . . sinz
sinz ~ z, £ — 0, in fact lim — =1,
=0 g
: ; . sinz
sinz = o(z), £ — 400, since lim — =;
T—=+oo T

ii) We have sinz = o(tan z), T — § since
. sinzg

lim
z—% tanz

= lim cosz = 0.
Tz
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iii) One has cosz = 2z — 7, © — %, because

coszT . cos(t+ %) sint 1 =
m =lim ——2% = — lim el o
=3 2 —7 t=0 2t £50 2t 2

Properties of the Landau symbols

i) Itis clear from the definitions that the symbols <, ~, o are particular instances
of O, in the sense that

f=g9=f=0(g), Ff~g=>f=0(@), f=olg)=f=0()
for £ — c. Moreover the symbol ~ is a subcase of =
f~9 = fxg
Observe that if f = g, then (5.1) implies
o f@)

; hence f ~ fg.
= lg(z) I
ii) The following property is useful
Fivg s s L =g olg) (5.2)

By defining h(z) = f(z) — g(z) in fact, so that f(z) = g(z) + h(z), we have

frg = fg; 1 z=s ii_gi(—g%—l)=0
= x#cgg; 0 < h=og).

iii) Computations are simplified once we notice that for any constant A % 0

o(Af)=o(f) and  Ao(f) = o(f). (5-3)
In fact g = o(\f) means that hm )\if(% = 0, otherwise said ig’rt igz; =0

or g = o(f). The remaining 1dent1ty is proved in a similar way. Analogous
properties to (5.3) hold for the symbol O.
Note that o(f) and O(f) do not indicate one specific function, rather a precise
property of any map represented by one of the two symbols.

iv) Prescribing f = o(1) amounts to asking that f converge to 0 when z — c.

Namely £1)
T
0.

gl = b=t
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Similarly f = O(1) means f converges to a finite limit for z tending to e.
More generally (compare Remark 5.2), f = O(1) means that f is bounded in
a neighbourhood of ¢: that is to say, there exists a constant C > 0 such that

lf(z)| < C, Vzel, z#e,

I being a suitable neighbourhood of ¢.

v) The continuity of a function f at a point zy can be expressed by means of the
symbol o in the equivalent form

F(@) = f(z0) +0(1), & zo. (5.4)
Recalling (3.9) in fact, we have

lim f(z) = f(zo) = lim (f(z) - f(zo0)) =0

T—Tg T—zg

— f(z) - f(zo) =0(1), z— zo.

The algebra of “little o’s”

i) Let us compare the behaviour of the monomials z™ as z — (:

" =0(z™), z 0, <= n>m.

In fact n

T . - 3 .
lim — = lim 2"™ = 0 if and only if n—m > (.
z—0 pm z—0

Therefore when z — 0, the bigger of two powers of z is negligible.

ii) Now consider the limit when z — +oc, Proceeding as before we obtain

2" =o(z™), z— +o0, = n < m.

So, for z — +o0, the lesser power of = is negligible.

iii) The symbols of Landau allow to simplify algebraic formulas quite a lot when
studying limits. Consider for example the limit for 2 — 0. The following prop-
erties, which define a special “algebra of little o 's”, hold. Their proof is left to
the reader as an exercise:

a) ofz™) + o(z") = o(z");
b)  o(z") £o(zm) = o(z?), with p = min(n, m); (5.5)
) o(da™) = o(z"), for each A e R\ {0} ;
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zMo(ah) =

d)  e(z)o(z") = o(2")

O(mm—i-n) :

if ¢ is bounded in a neighbourhood of z = 0;

o(a™)o(z") = o(z™*");

g [o=™)* =o(z*).

Fundamental limits

The fundamental limits in the Table of p. 106 can be reformulated using the sym-

bols of Landau:
sinz ~ z, z — 0;
1 —cosz = 22, x—0; precisely, 1—cosz~ 22?, 1z —0;
log(1 + z) ~ z, z — 0; equivalently, logz ~ 2z —1, z—=1;
e’ — 1~z z—0:
l+z)*—-1~az, z-—0.

With (5.2), and taking property (5.5) c) into account, these relations read:

sinz = z + o(z),

1—cosz = 3% +

log(1 + z) =z + o(z),
e’ =14z + o),
1l+z)*=1+azx+o(z), z—0.

z — 0;

o(z®), z—0, or cosz=1-3z%+0(z?), z—0;

z — 0;

=0, orlogz=2—1+o0(z—1), z—1;

Besides, we shall prove in Sect.6.11 that:

a)
b)
c)

d)

% = o(e®)

1

e = o(|z|®),

logz = o(z%),

logm=o(

T

1),

T — +00,
T — —00,

T — 400,

z— 0T,

Va e R;
Vo e R;
Ya > 0;

Va > 0.

Examples 5.4

(5.6)

i) From ¢’ =1+t +o(t), t — 0, by setting ¢ = 5z we have e = 1 + 5z + o(5z),
ie., €@ =1+ 5z +o(z), z — 0. In other words e5® — 1 ~ 5z, £ — 0.
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ii) Setting ¢ = —322 in (1+8)2 =14 st+o(t)
1-322 4 o(—3z2) =1 - 222 + o
z—0.

» & = 0, we obtain (1 - 3z2)1/2 =
2%), @ — 0. Thus (1 - 322)1/2 — 1 ~ _342,

iii) The relation sint = ¢ + o(t),
(22 + o(22)) = 242 + o(22),

t — 0, implies, by putting ¢ = 2z, zsin2z =
Z = 0. Then sin 2z ~ 222, z — 0. 5

We explain now how to use the symbols of Landau for calculating limits. All

maps dealt with below are supposed to be defined, and not to vanish, on a neigh-
bourhood of ¢, except possibly at e.

Proposition 5.5 Let us consider the limits

;1_13 flz)g(z) and lim -'{(ﬁ)—

Given functions f and § such that F~fandgn~g forz— ¢, then
Im f(2)g(e) = lim f()3(x), (5.7)

16 T
% g(0) ~ 4% ) -

Proof. Start with (5.7). Then

- = lim £ 7,4 9(2)

= lim 23 m 5 1 o)

From the definition of f ~ f ad
(5.8) is completely analogous.

4(=)

g ~- g the result follows. The proof of

Corollary 5.6 Consider the limits

i . f(z)+ filz)
:};Ij,'lc (f(z)+ £ (@) (9(z) + g1 (z)) and th_w M
If fr = o(f) and g1 = o(g) when z —s ¢, then

Iim (£(2) + £1(2)) (9(2) + 01 () = lim f(z)g(z), (5.9)

m {@TH@) _ . f()
T s e e _ (5.10)
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Proof. Set f = f+ fi; by assumption f = F+olf), so from (5.2) one has f ~ f.
Simtilarly, putiing g = g + g1 vields g ~ g. The claim follows from the
previous Proposition. -

The meaning of these properties is clear: when computing the limit of a product,
we may substitute each factor with an equivalent function. Alternatively, one may
ignore negligible summands with respect to others within one factor. In a similar
way one can handle the limit of a quotient, numerator and denominator now being
the ‘factors’.

Examples 5.7
i) Compute

. 1l—cos2z

lim e e

z—0 sin“ 3z
From the equivalence 1 — cost ~ %tz, t — 0, the substitution ¢t = 2z gives

1—cos2z ~2z%, z—0.
Putting ¢ = 3z in sint ~ ¢, t — 0, we obtain sin3z ~ 3z, £ — 0, hence
sin?3z ~ 922, z — 0.

Therefore (5.8) implies

fir 1—cos2z - 20 2
z—0 sin2 3z T 20 9z2 - 9
ii) Evaluate
sin 2z + z°

;.!HH) 4z + 5log(l + z2)°
We shall show that for z — 0, 2* is negligible with respect to sin 2z, and similarly
5log(1+ z?) is negligible with respect to 4. With that, we can use the previous
corollary and conclude
lim sin 2z + 23 s T sin 2z
w04z + 5log(l +22) -0 dz
Recall sin 2z ~ 2z for £ — 0; thus
Hip % i 2
z=0sin2z »—02z
that is to say &® = o(sin 2z) for z — 0. On the other hand, since log(1 + ¢) ~ ¢

for t — 0, writing ¢t = 22 yields log(1 + z2) ~ 22 when z — 0. Then
2 2
lim 5log(1 + 2?) I 5z =
z—0 4z z—0 4z

ie., 5log(1l + z?) = o(4z) for z — 0.

These ‘simplification’ rules hold only in the case of products and quotients.
They do not apply to limits of sums or differences of functions. Otherwise put,

the fact that f ~ f and § ~ g when z — ¢, does not allow to conclude that
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lim[f(2) + g(z)] = lim[f(2) £ §(=)].

T—+C

For example set f(z) = V22 + 2z and g(z) = v/z2 — 1 and consider the limit

: 2 - 2 _
111}_100(‘\/:8 + 2z \/x 1).

T—

Rationalisation turns this limit into
(z>+22) — (=2 -1) _ - 2z+1
z=+00 /22 + 2z + /22 — 1 z—»+oox(\/1+g+\/1__1§)

Had we substituted to f(z) the function f(z) = z, equivalent to f for z — +00,
we would have obtained a different limit, actually a wrong one. In fact,

=15

s 22— (22 -1) 1
im (z-vz?-1)= lim - -y L _g
z—+00 eotoo g4 /72 —1  @—too (14+4/1-%)

The reason for the mismatch lies in the cancellation of the leading term z? ap-
pearing in the numerator after rationalisation, which renders the terms of lesser

degree important for the limit, even though they are negligible with respect to z2
for x — 4o0.

5.2 Infinitesimal and infinite functions

Definition 5.8 Let f be a function defined in a neighbourhood of ¢, except
possibly at c. Then f is said infinitesimal (or an infinitesimal) at c if

lim f(z) =0,
T—FC
i.e., if f = o(1) for £ — c. The function f is said infinite at ¢ if

lim f(z) = oc.

T—*C

Let us introduce the following terminology to compare two infinitesimal or
infinite maps.

Definition 5.9 Let f, g be two infinitesimals at c.

If f < g for x — ¢, f and g are said infinitesimals of the same order.
If f = o(g) for = — ¢, f is called infinitesimal of bigger order than g.
If g = o(f) for z — ¢, f is called infinitesimal of smaller order than g.
If none of the above are satisfied, f and g are said non-comparable infin-
itesimals.
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Definition 5.10 Let f and g be two infinite maps at c.
Iff=gforz—e, fand g are said to be infinite of the same order.,
If f = o(g) for z = ¢, f is called infinite of smaller order than g.

If g=o(f) for z — ¢, f is called infinite of bigger order than g.

If none of the above are satisfied, the infinite functions f and g are said
non-comparable.

Examples 5.11

Bearing in mind the fundamental limits seen above, it is immediate to verify the
following facts:
i) €® — 1 is an infinitesimal of the same order as z at the origin.
ii) sinz? is an infinitesimal of bigger order than z at the origin.

sinz
(1 —cosz)?
iv) For every o > 0, ¢ is infinite of bigger order than z® for z — +00.

1
iii) is infinite of bigger order than — at the origin.
T

1
v) For every o > 0, log z is infinite of smaller order than i for z — 0.

vi) The functions f(z) = zsin 3 and g(z) = z are infinitesimal for z tending

to 0 (for f recall Corollary 4.7). But the quotient L::)) = sin% does not admit
g

limit for 2 — 0, for in any neighbourhood of 0 it attains every value between —1

and 1 infinitely many times. Therefore none of the conditions f =< g, f = o(g),

g = o(f) hold for z — 0. The two functions f and g are thus not comparable.

Using a non-rigorous yet colourful language, we shall express the fact that I
is infinitesimal (or infinite) of bigger order than g by saying that f tends to 0 (or
00) faster than g. This suggests to measure the speed at which an infinitesimal (or
infinite) map converges to its limit value.

For that purpose, let us fix an infinitesimal (or infinite) map ¢ defined in a
neighbourhood of ¢ and particularly easy to compute. We shall use it as term of
comparison (‘test function’) and in fact call it an infinitesimal test function
(or infinite test function) at c. When the limit behaviour is clear, we refer to
( as test function for brevity. The most common test functions (certainly not the
only ones) are the following. If ¢ = z; € R, we choose

p@)=z-20 or z)=|z- Zo|
as infinitesimal test functions (the latter in case we need to consider non-integer
powers of ¢, see later), and
1 1

o T) = ——"
T — Iy ' #(z) |z — 2o
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as infinite test functions. For ¢ = 2§ (c=2y), we will choose as infinitesimal test
function
pl@)=z-20 (p(z) =20 — )
and as infinite test function

((z) =

I — Iy Ip—&

%

For ¢ = +o0, the infinitesimal and infinite test functions will respectively be

1

o(z) = ” and  o(z) ==z,

while for ¢ = —o0, we shall take

o

w(z) = 2|

and  ¢(z) = |z|.

The definition of ‘speed of convergence’ of an infinitesimal or infinite f depends
on how f compares to the powers of the infinitesimal or infinite test function. To
be precise, we have the following definition

Definition 5.12 Let f be infinitesimal (or infinite) at c. If there ewists a real
number a > 0 such that

=% z-oe¢ (5.11)

the constant o is called the order of f at ¢ with respect to the infinites-
imal (infinite) test function (.

Notice that if condition (5.11) holds, it determines the order uniquely. In the
first case in fact, it is immediate to see that for any B < o one has f = o(p? )
while 8 > « implies (? = o(f). A similar argument holds for infinite maps.

L]

If f has order « at ¢ with respect to the test function ¢, then there is a real
number £ % 0 such that
f(z)

lim =4,
z—e (p¥ (:c)

Rephrasing:
fr~lp® zoe
which is to say — recalling (5.2) - f = Lp™ 4 o(£yp®), for  — c. For the sake of

simplicity we can omit the constant ¢ in the symbol o, because if a function A
satisfies h = o(£p®), then h = o(¢®) as well. Therefore

f=L%+0(p%), z—e.
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Definition 5.13 The Junction
p(z) = Lp*(z) (5.12)

is called the principal part of the infinitesimal (infinite) map f at ¢
with respect to the infinitesimal (infinite) test function ¢.

From the qualitative point of view the behaviour of the function f in a small
enough neighbourhood of ¢ coincides with the behaviour of its principal part (in
geometrical terms, the two graphs resemble each other). With a suitable choice of
test function o, like one of those mentioned above, the behaviour of the function
£p*(z) becomes immediately clear. So if one is able to determine the principal
part of a function, even a complicated one, at a given point ¢, the local behaviour
around that point is easily described.

We wish to stress that to find the order and the principal part of a function f
at ¢, one must start from the limit

lim £(2)

z=c p%(z)

and understand if there is a number o for which such limit — say £ — is finite and
different from zero. If so, « is the required order, and the principal part of fis
given by (5.12).

Examples 5.14

i) The function f(z) = sinz — tanz is infinitesimal for  — 0. Using the basic
equivalences of p. 127 and Proposition 5.5, we can write

; sinz (cosz — 1 z- (—iz? 1
sinz — tanz = — (cosz )~ (=2 )=——$3, z — 0.
cosz 1 2
It follows that f(z) is infinitesimal of order 3 at the origin with respect to the
test function () = z; its principal part is p(z) = -3z,

ii) The function

f(@) =vz2+3— /22 -1
is infinitesimal for z — +oo. Rationalising the expression we get
f(z) = (@®+3) - (2 -1) _ 4
IRV (s h i B)
The right-hand side shows that if one chooses @(z) = 1 then

lim @ =3

r—+oo (p(:r)
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Therefore f is infinitesimal of first order for z —s +00 with respect to the test
function £, with principal part p(z) = 2.

iii) The function

f(z) = V925 + 723 -1

s infinite when z — +o0. To determine its order with respect to ¢(z) = z, we

consider the limit
9+ 5 -1
fioy AP o :

T—+oo0 o T—+occ il

By choosing o = £ the limit becomes 3. So f has order $ for z — +o0 with
respect to the test function ¢(z) = z. The principal part is p(z) = 32572, o

Remark 5.15 The previous are typical instances of how to determine the order
of a function with respect to some test map. The reader should not be mislead to
believe that this is always possible. Given an infinitesimal or an infinite f at ¢, and
having chosen a corresponding test map ¢, it may well happen that there is no real
number « > 0 satisfying f < ¢ for z — c. In such a case it is convenient to make
a different choice of test function, one more suitable to describe the behaviour of
f around c. We shall clarify this fact with two examples.

Start by taking the function f(z) = e** for & — +oo. Using (5.6) a), it follows
immediately that 2 = 0(e?*), whichever a > 0 is considered. So it is not possible
to determine an order for f with respect to ¢(z) = z: the exponential map grows
too quickly for any polynomial function to keep up with it. But if we take as test
function ¢(z) = e® then clearly f has order 2 with respect to ©.

Consider now f(z) = zlogz for z — 0+. In (5.6) d) we claimed that

1
lim 2% -0,  vg>o.
c—0+ 7
So in particular f(z) = l—;}%f is infinitesimal when z — 0. Using the test function

@(x) = z one sees that

lim =
0+ T o0+ g1

zlog z lim logz {0 fa<l,
—oo otherwise.

Definition 5.9 yields that f is an infinitesimal of bigger order than any power of
¢ with exponent less than one. At the same time it has smaller order than = and
all powers with exponent greater than one. In this case too, it is not possible to
determine the order of f with respect to z. The function |f(z)| = z|logz| goes to
zero more slowly than z, yet faster than 2 for any o < 1. Thus it can be used as
alternative infinitesimal test map when z — 0. 0
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9.3 Asymptotes

We now consider a function f defined in a neighbourhood of +o00 and wish to
study its behaviour for z — +o00. A remarkable case is that in which f behaves
as a polynomial of first degree. Geometrically speaking, this corresponds to the
fact that the graph of £ will more and more look like a straight line. Precisely, we
suppose there exist two real numbers m and g such that

im (f(z) — (mz +q)) =0, (5.13)

r—+4oo

or, using the symbols of Landau,
f(@) =mz+q+o0(1), T — +00.

We then say that the line g(z) = mz + ¢ is a right asymptote of the function f.
The asymptote is called oblique if m # 0, horizontal if m = 0. In geometrical
terms condition (5.13) tells that the vertical distance d(z) = |f(z) — g(z)| between
the graph of f and the asymptote tends to 0 as z — +oo (Fig. 5.1).

The asymptote’s coefficients can be recovered using limits:

m= IEEI}W i(;'""_) and g¢= IHTW (f(z) —mz). (5.14)

The first relation comes from (5.13) noting that

L—+t60 T T=+o0 T T=+o0 T z=doo L z—too T

while the second one follows directly from (5.13). The conditions (5.14) furnish the
means to find the possible asymptote of a function f. If in fact both limits exist

L

d(z)

Figure 5.1. Graph of a function with its right asymptote
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and are finite, f admits Y = Mz + g as a right asymptote. If only one of (5.14) is
not finite instead, then f will not have an asymptote.

Notice that if f has an oblique asymptote, i.e., if m # 0, the first of (5.14)
tells us that f is infinite of order 1 with respect to the test function ¢(z) = z for
& = +00. The reader should beware that not all functions satisfying the latter
condition do admit an oblique asymptote: the function f(@) =z+,/7 for example
is equivalent to g for 7 — +00, but has no asymptote since the second limit in
(5.14) is +oc.

Remark 5.16 The definition of (linear) asymptote given above is a particular
instance of the following. The function f is called asymptotic to a function g for

Iim (f(z) - g(z)) = 0.

T—+oo

If (5.13) holds one can then say that f is asymptotic to the line 9(z) = mz +q.
The function f(z) = 22 + 3 instead has 1o line as asymptote for z — +o0, but is
nevertherless asymptotic to the parabola g9(z) = z2. a

In a similar fashion one defines oblique or horizontal asymptotes for z - —co
(that is oblique or horizontal left asymptotes).

If the line y = mgz + ¢ is an oblique or horizontal asymptote both for z — +o0
and & — —o0, we shall say that it is a complete oblique or complete horizontal
asymptote for f.

Eventually, if at a point 2o € R one has lim f(z) = co, the line z = Ty is
I—rxq

called a vertical asymptote for f at 29. The distance between points on the
graph of f and on a vertical asymptote with the same Y-coordinate converges to
zero for z — xy. If the limit condition holds only for z —s zg or z — zy we talk
about a vertical right or left asymptote respectively.

Examples 5.17

i) Let f(z):xj_l.As

lim f(z)=1 and lim  f(z) = Foo,

z—+too T——1%
the function has a horizontal asymptote ¥ =1 and a vertical asymptote ¢ = —1,

ii) The map f (z) = V1 + 27 satisfies

VIta=2
lim f(z) = +o0, lim f(z) = lim !_-’il_;—_x_ =1

T—+oo z—toc T—+oo
and
. 1422 — 22
im (Vitz2— )= fin — 1% O
x—]:ll-l-fl:loo( T8 " m-il-lllloomf]_+m2+33 3
1422 - z2
. Py -
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Therefore f has an oblique asymptote for £ — 400 given by y = z, plus another
one of equation y = —z for z — —oc.

iii) Let f(z) = z + log z. Since

li =- Ii 1 =
x_lgl{_(m +log z) 00, m_ir_'r_lm{w +logz) = 400,

. z+logz .

lim ——=~ -1 lim (z +logz — ) = 400,
T—+oc T T4

the function has a vertical right asymptote z = 0 but no horizontal nor oblique
asymptotes. 0

5.4 Further properties of sequences

We return to the study of the limit behaviour of sequences begun in Sect. 3.2.
General theorems concerning functions apply to sequences as well (the latter being
particular functions defined over the integers, after all). For the sake of complete-
ness those results will be recalled, and adapted to the case of concern. We shall
also state and prove other specific properties of sequences.

We say that a sequence {@n}n>n, satisfies a given property eventually, if there
exists an integer N > ng such that the sequence {a,},>n satisfies that property.
This definition allows for a more flexible study of sequences.

Theorems on sequences

=

. Uniqueness of the limit: the limit of a sequence, when defined, is unique.

2. Boundedness: a converging sequence is bounded.

3. Ewmistence of limit for monotone sequences: if an eventually monotone se-
quence is bounded, then it converges: if not bounded then it diverges (to
—+0o0 if increasing, to —oo if decreasing).

4. First comparison theorem: let {an} and {bn} be sequences with finite or
infinite limits lim a, = ¢ and lim bp = m. If a, < b, eventually, then

n—oa n—od
£ < m.
5. Second comparison theorem (“Squeeze rule”): let {a,}, {b,} and {c,} be
sequences with lim a, = lim ¢, = £, If @n < by < ¢, eventually, then
n=o0 n—oo
lim b, = ¢.
n—o0
6. Theorem: a sequence {an} is infinitesimal, that is lim an =0, if and only
n—oo
if the sequence {|a,|} is infinitesimal.

7. Theorem: let {a,} be an infinitesimal sequence and {b,} a bounded one.
Then the sequence {a,b,} is infinitesimal.
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8. Algebra of limits: let {a,} and {0} be such that l_iin @n = £and nlix}n bp, =
n o0 o0
m (¢, m finite or infinite). Then

lim (a, +b,) =f+tm,
n—oo
lim a, b, ={m,

i 2n i, if bp # 0 eventually ,

n—oo b, m

each time the right-hand sides are defined according to the Table on p- 96.
9. Substitution theorem: let {an} be a sequence with lim an = £ and suppose
g s a function defined in a neighbourhood of ¢:
a) if £ € R and g is continuous at ¢, then lim 9(an) = g(2);
—+oo
b) if £¢ R and lim 9(x) = m exists, then lim g(an) = m.
T+ n—co

Proof. We shall only prove Theorem 2 since the others are derived adapting the
similar proofs given for functions.
Let the sequence {an}n=n, be given, and suppose it converges to ( £ R.
With ¢ = 1 fixed, there exists an integer n; > ng so that |a, — #| < 1 for
all n > n,. For such n’s then the triangle inequality (1.1) yields

|an| = lan — C+ ¢ < ia, — 2] + 0] <1+ ||

By putting M = max{|an, ..., an,|,1 + |#]} one obtains lan] < M,
Yn = ng.

Examples 5.18

i) Consider the sequence an = ¢",where g is a fixed number in R. It goes under
the name of geometric sequence. We claim that

0 if [g] < 1,
ifg=1
lim ¢" = ; z !
ol +00 ifg>1,
does not exist if g < —1.

If either ¢ = 0 or g = 1, the sequence is constant and thus trivially convergent
toOor1 respectively. When ¢ = —1 the sequence is indeterminate,

Let ¢ > 1: the sequence is now strictly increasing and so admits a limit, In order
to show that the limit is indeed +00 we write ¢ = 1 +r with 7 > 0 and apply
the binomial formula (1.13):
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q" =(1+r)“=i(:)rk=1+nr+§(:)rk.

k=0
As all terms in the last summation are positive, we obtain
1+r)">1+nr, Yn >0, (5.15)
called Bernoulli inequality!. Therefore q" > 1+ nr; passing to the limit for
n — 00 and using the First comparison theorem we can conclude.

1 ;
Let us examine the case |g| < 1 with g # 0. We just saw that i > 1 implies

n—oo

At last, take ¢ < —1. Since

1 T
lim (H) = +o0. The sequence {|g|"} is thus infinitesimal, and so is {g"}.

lim ¢** = lim (@*)* = 400, lim ¢***! = ¢ lim ¢% = —00,
k—oc k—oo k—oo k—oo

the sequence ¢" is indeterminate.

ii) Let p be a fixed positive number and consider the sequence t/p. Applying the
Substitution theorem with g(z) = p* we have

im /p= lim p'/m =p0 =1,

n—oo n—oo

iii) Consider the sequence /n; using once again the Substitution theorem to-
gether with (5.6) c), it follows that

: : logn
Hm ¢/n= lim exp—2" — 60 — 1.
n—oo n—o0 n -

There are easy criteria to decide whether a sequence is infinitesimal or infinite.
Among them, the following is the most widely employed.

Theorem 5.19 (Ratio test) Let {an} be a sequence for which a, > 0
eventually. Suppose the limit

Tim Un+1 S
n=—o0 ﬂ,n

exists, finite or infinite. If ¢ < 1 then lim an =0; if ¢ > 1 then lim a, =
+c() n—oco 00

! By the Principle of Induction, one can prove that (5.15) actually holds for any r > —1;
see Appendix A.1, p. 427.
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Proof. Suppose a, > 0, vn = no. Take ¢ < 1 and set = = ] — g. By definition of

limit there exists an integer n. > ng such that for all n>n.

a :
THEL <@re=1; ie, Ont1 < Q.
Gn
So the sequence {a,} is monotone decreasing eventually, and as such it
admits a finite non-negative limit £. Now if / were different [ront zero, the
fact that
i Onga
= lim ——
q = G,
would contradict the assumption g < 1.
If ¢ > 1, it is enough to consider the sequence {1/a,}. 0

r
=-=1
F:

Nothing can be said if g=1.

Remark 5.20 The previous theorem has another proof, which emphasizes the
speed at which a sequence converges to 0 or +o0. Take for example the case g < 1.
The definition of limit tells that for all » with ¢ < 7 < l,ifone puts e = r — ¢
there is a n. > ng such that

a .
2 ~» that is, any1 <ra,
a

n

for each n > n,. Repeating the argument leads to
An41 < TAn < r2an_1 L~ Tn*n‘and.] (5.16)

(a precise proof of which requires the Principle of Induction; see Appendix A,
p. 430). The First comparison test and the limit behaviour of the geometric se-
quence (Example 5.18 1)) allow to conclude. Formula (5.16) shows that the smaller
q is, the faster the sequence {an} goes to 0.

Similar considerations hold when g>1. &

At last we consider a few significant sequences converging to +o00. We compare
their limit behaviour using Definition 5.10. To be precise we examine the sequences

logn, n%, ¢", n!, n® (@>0, g>1)

and show that each sequence is infinite of order bigger than the one preceding it.
Comparing the first two is immediate, for the Substitution theorem and (5.6) c)
yield logn = o(n®) for n — 0.

The remaining cases are tackled by applying the Réitio test 5.19 to the quotient of

n
two nearby sequences. Precisely, let us set On = E;‘_ Then

@ n 1N % 1
Gnt1 _ (n+1)% g _(?i_) - E<11 n — 0.
n

- ne q

Gn gntt e
Thus lim a, =0, or n® = o(q™) for n — oo.
n—o0



