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Differential calculus

T S

The precise definition of the notion of derivative, studying a function’s differenti-. . ...

ability and computing its successive derivatives, the use of derivatives to analyse
the local and glgbal. behaviours of functions are ‘all constituents of Differential
Calculus. nsoerthe LAY e b e T

6.1 The défix‘gz;j;ive |

We start by defining the derivative of a function.

Let f : dom f C R — R be a real function of one real variable, take zy € dom f

and suppose f is defined in a neighbourhood I,.(zg).of z5. With z € I, (z0), z# xp
fixed, denote by ' o
Az =g — g

1. - ‘the (positive or negative) increment of the indeperdent variable between

v %o.and z, and by
= Af = f(z) - f(zo)
the corresponding increment of the-—'dependent variable. Note that z = zg +
Az, f(z) = f(zo) + Af.

The ratio .. :

is called difference quotient of f between zj and z.

In this manner Af represents the absolute increment of the dependent variable
J when passing from zg to zo -+ Az, whereas the difference quotient detects the
rate of increment (while Af/f is the relative-increment). Multiplying the difference
quotient by 100 we obtain the so-called percentage increment. Suppose a rise by
Az = 0.2 of the variable z prompts an increment Af = 0.06 of f; the difference

quotient %5 equals 0.3 = %, corresponding to a 30% increase.
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f(zo + Az);

f(za)

Ty zo + Ax

Figure 6.1. Secant and tangent lines to the graph of f at Py

Graphically, the difference quotient between zy and a point z; around Zg is the
slope of the straight line s passing through Py = (=, f(z0)) and P} = (z1, f (1)),
points that belong to the graph of the function; this line is called secant of the
graph of f at Py and P, (Fig. 6.1). Putting Az = z; — 9 and Af = f(z1) - f(zo),
the equation of the secant line reads .

Y =s(z) = f(zo) + %(m—:cu), z € R. (6.1)

A typical application of the difference quotient comes from physics. Let M be
a point-particle moving along a straight line; call s = s(t) the 2-coordinate of the
position of M at time ¢, with respect to a reference point O. Between the instants
to and ¢ = ¢ + At, the particle changes position by As = s(t1) — s(20). The
difference quotient, ﬂ—g represents the average velocity of the particle in the given
interval of time.

How does the difference quotient change, as Az approaches 07 This is answered
by the following notion.

d-iﬁ'erenﬁi-;iblgé:'fat. 2o if the limit of the difference quotient é bfe_ﬁueen-'_:éd %
~and z egists and is finite, as « approaches o. The real number :

 Definition 6.1 4 map. f defined on a neighbourhood. of 7 € R is called

e A N e e A2) = flwo) :
f (-_x{))_ —a:]i’ﬂzlo == ‘—500 = Aliﬂn R A:L‘ e

is called (first) dertvative of f at 5.
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The derivative at zg is variously denoted, for instance also by

ve),  L@)  Dia)

The first symbol goes back to Newton, the second is associated to Leibniz.

From the geometric point of view f’(zo) is the slope of the tangent line at
Py = (2o, f(0)) to the graph of f: such line ¢ is obtained as the limiting position
of the secant s at Py and P = (z, f(z)), when P approaches Py. From (6.1) and
the previous definition we have

y =t(z) = f(zo) + f'(z0)(z — z0), z €R.

In the physical example given above, the derivative v(ty) = s'(tg) = A]imo T
- iy

is the instantaneous welocity of the particle M at time tg.
Let
dom f' = {z € dom f : f is differentiable at =}

and define the function f':dom f' CR - R, f':z — f'(z) mapping = € dom f’
to the value of the derivative of f at z. This map is called (first) derivative of f.

Definition 6.2 Let I be a subset of dom f. We say that f is differentiable
on I (orin I) if f is differentiable at each point of I.

A first yet significant property of differentiable maps is the following.

Proposition 6.3 If f is differentiable at zo, it is also continuous at g.

Proof. Continuity at zp prescribes
xlinxl f(z) = f(=o), that is lim (f(z) — f(zo)) = 0.
—To T+Tg

If f is differentiable at zg, then

Jim (f(@) — f(ao)) = i 1O g
f(z) = f(zo)

lim (z — zp)
T~To LT —Tp T To

= f'(20)-0=0,
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Not all continuous maps at a point are differentiable though. Consider the map
f(z) = || it is continuous at the origin, yet the difference quotient between the
origin and a point z # 0 is

A5 _ f(=z) - £(0) |d={+1ﬁw>&

Az -1 ifz<0,

= 6.2
-0 z Lo
s0 the limit for z — 0 does not exist. Otherwise said, f is not differentiable at
the origin. This particular example shows that the implication of Proposition 6.3
can not be reversed: differentiability is thus a stronger property than continuity,
an aspect to which Sect. 6.3 ig entirely devoted.

6.2 Derivatives of the elementary functions. Rules of
differentiation

We begin by tackling the issue of differentiability for elementary functions using
Definition 6.1.

i) Consider the affine map f(z) = az + b, and let Zo € R be arbitrary. Then

i i (a(xg+ﬁx)+b)—-(a:cu+b)_ . _
Fleo) = Jim, Az = =,

in agreement with the fact that the graph of f is a straight line of slope a. The
derivative of f (z) = az + b is then the constant map f’(z) = a.
In particular if f is constant (a =0), its derivative is identically zero.

ii) Take f(z) = 22 and 2, € R. Since

F(oo) = Jim (Zo+ 42— o}

Az—0 Az = .:'Alirﬂo(%n + 4z) = 2a0,

the derivative of f(z) = 22 is the function f(z) = 2.

iii) Now let f(z) = 2™ with n, € N. The binomial formula (1.13) yields

(20 + Az)" — ap
(@0 + Az)" — 2§

(o) = axl:lcﬂu Az
n
T3 +nay 1 Az + Z (2) gg—k(dg;)k —zf
- T k=2
Alfﬂo Az

T
. =g n n—k k=1 _ _ n-1
AI;I_Il_m (nxg + ;;_2 (k) z5 "~ (Az) ) =nzg .

for all 25 € R. Therefore, f'(#) = nz™~1 is the derivative of flz) =am .
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iv) Even more generally, consider f(z) = z® where @ € R, and let 9 # 0 be a
point of the domain. Then

(30 + Az)* — 28 of [(1+22)" 1]

7 — n _
F(@o) Alslalﬂo Ax Alalcrfm Az
(a3
A
=" 3.:0:—1 Ilm (1 + ;ér:) B 1
0 Ax—0 Az ’

S

Substituting y = —i;."f— brings the latter into the form of the fundamental limit

(4.13), so

[(xo) = ax§ ™.
When a > 1, f is differentiable at zp = 0 as well, and f’(0) = 0. The function
f(z) = z* is thus differentiable at all points where the expression z*~! is well
defined; its derivative is f'(z) = az®~!.

For example f(z) = v/ = '/2, defined on [0, +00), is differentiable on (0, +oc)
with derivative f’(z) = ﬁ The function f(z) = Va5 = 2%/3 is defined on R,
where it is also differentiable, and f'(z) = 35-:.,"2’ S %\:V:? i
v) Now consider the trigonometric functions. Take f(z) = sinz and zo € R.
Formula (2.14) gives

sin(zo + Az) —sinzp lim 2sin % cos(zg + %)

f(zo) = lim

Az—0 Az Az—0 Az
I sin % I ( g Ax)

= lim im cos (z —).
Ax—0 %E Az—0 0 2

The limit (4.5) and the cosine’s continuity tell
f'(zo) = coszp.

Hence the derivative of f(z) =sinz is f'(z) = cosz.
Using in a similar way formula (2.15), we can see that the derivative of f(z) =
cosz is the function f/(z) = —sinz.

vi) Eventually, consider the exponential function f(z) = a®. By (4.12) we have

a:r:u-!-/_‘-:c — g%o aAm _

fl(zg) = lim ———— =4a" lim

— g
=a"loga
Az—0 Az Az—0 Ax B

showing that the derivative of f(z) = a® is f'(z) = (log a)a®.

As loge = 1, the derivative of f(z) = e* is f'(z) = e* = f(z), whence the
derivative f’ coincides at each point with the function f itself. This is a crucial
fact, and a reason for choosing e as privileged base for the exponential map.
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We next discuss differentiability in terms of operations (algebraic operations,
composition, inversion) on functions. We shall establish certain differentiation
rules to compute derivatives of functions that are built from the elementary ones,
without resorting to the definition each time. The proofs may be found in Ap-
pendix A.4.1, p. 449.

Theorem 6.4 (Algebraic operations) Let f(z),g(z) be differentiable
maps at zo € R. Then the maps f(z) + g(z), f(z)g(z) and, if g(zo) # 0,
f(z)

Q_(Ej are differentiable al zy. To be precise,

(f £ 9)'(z0) = f'(m0) % g'(0), (6.3)
(F 9)'(z0) = f'(z0)g(z0) + f(z0)g’ (z0), (6.4)

£\ (. _ F@0)g(@0) — f(z0)g'(z0)
(7) = l9@@)P ' -

Corollary 6.5 (Linearity of the derivative) If f (z) and g(z) are differ-
entiable at o € R, the map af(z) + Bg(z) is differentiable at zo for any
a,BeR and

(af + Bg)'(z0) = af'(z0) + By’ (z0). (6.6)

Proof. Consider (6.4) and recall that differentiating a constant gives zero: then

(/) (m0) = evj'(zo) and (4g)(z) = 1g'(zg) follow. The rest is a con-
sequence of (6.3). 0

Examples 6.6

i) To differentiate a polynomial, we use the fact that Dz" = nz™ ! and apply
the corollary repeatedly. So, f(z) = 3a% — 2% — 23 + 322 — 5z + 2 differentiates
to

fl(x) =3-52* —2-42° — 322 + 3.2z — 5 = 152* — 823 — 322 + 6z — 5.
ii) For rational functions, we compute the numerator and denominator’s deriv-
atives and then employ rule (6.5), to the effect that

2% — 3z + 1
o)==

has derivative
f’(a:) _ (2z — 3)(2z — 1)— (55'2 -3z +1)2 . 222 — 2z +1
- (22 -1)? T4z 4z + 1
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iii) Consider f(z) = z® sinz. The product rule (6.4) together with (sinz)’ = cosz
yield

f'(z) = 3z%sinz + z° cos z.
iv) The function

sinz
flz) =tanz = =

08 T
can be differentiated with (6.5)

. : 2 ;9 . o

cosz cosz —sinz (—sinz) cos’z +sin‘z sin” z
f'(z) = - ( )= 2 =1+ —— =1+tan’z.

cos? cos? z cos’z

Another possibility is to use cos? z + sin? z = 1 to obtain
1
I o
z) = : =
F(=) cos® z

Theorem 6.7 (“Chain rule”) Let f(z) be differentiable at zp € R and g(y)
a differentiable map at yo = f(x0). Then the composition g o f(z) = g(f(z))
is differentiable at o and

(9 © f)'(z0) = g'(30) f'(w0) = ¢’ (£(20)) f (o). (6.7)

Examples 6.8
i) The map h(z) = 1 — z2 is the composite of f(z) = 1 — z2, whose derivative
is f'(z) = —2z, and g(y) = /9, for which ¢'(y) = 21% Then (6.7) directly gives
1 &
h(z) = ——=(-22) = ——.
(=) 2‘\/1—:82( 7 V1-—z?

ii) The function h(z) = ¢°®*3% is composed by f(z) = cos3z, g(y) = e¥. But
f(z) is in turn the composite of p(z) = 3z and ¥(y) = cosy; thus (6.7) tells
f'(z) = —3sin3z. On the other hand g¢'(y) = e¥. Using (6.7) once again we
conclude

h'(z) = —8e°° 3% sin 3z.

Theorem 6.9 (Derivative of the inverse function) Suppose f(z) is a
continuous, invertible map on a neighbourhood of zo € R, and differentiable
at xo, with f'(zg) # 0. Then the inverse map f~(y) is differentiable at
Yo = f(2o), and

1

1
e E e )

(f 1) (vo) =




176 6 Differential calculus

Examples 6.10
i) The function y = f(z) = tanz has derivative f'(z) = 1 + tan?z and inverse
z = f~!(y) = arctany. By (6.8)
1 1
—ANI LY — _ _
)0 = 1+tan?z 1+y2
Setting for simplicity f~! = g and denoting the independent variable with z,
the derivative of g(z) = arctanz is the function g'(z)

T 1tz

i) We are by now acquainted with the function y = f(z) = sinz: it is invertible
on [—Z, 2], namely z = f~'(y) = arcsiny. Moreover, f differentiates to f'(z) =
cosz. Using cos®z + sin’z = 1, and taking into account that on that interval
cosz > 0, one can write the derivative of f in the equivalent form f'(z) =

V1 —sin® z. Now (6.8) yields
1 1

(fw= = :

V1—sin?z 1-12
Put once again f~! = g and change names to the variables: the derivative of
g(x) = arcsinz is ¢'(z) =

Vi—z? i
In similar fashion g(z) = arccosz differentiates to g’'(z) = — S
9(2) 7@ = -
iii) Consider y = f(z) = a®. It has derivative f'(z) = (loga)a® and inverse
z = f~(y) = log, y. The usual (6.8) gives
1 1
1Ny — _ .
VW) = Gogayar = Toga
1
Defining f~! = g and renaming « the independent variable gives g'(z) = T,

as derivative of g(z) = log, z (z > 0).
Take now h(z) = log,(—z) (with z < 0), composition of  — —z and g(y): then

1
W(z) = ————(~1) = -———. Putting all el ol =
() (loga.)(—:c)( 1) Toza)z utting all together shows that g(z)

log, |z| (z # 0) has derivative ¢'(z) = T

1
With the choice of base a = e the derivative of g(z) = log|z| is ¢'(z) = . 0

Remark 6.11 Let f(z) be differentiable and strictly positive on an interval I.
Due to the previous result and the Chain rule, the derivative of the composite
mep g(z) = log f(z) s

f'(=)
g'(z) = .
®) =T
The expression £ is said logarithmic derivative of the map f. B

f
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The section ends with a useful corollary to the Chain rule 6.7.

Property 6.12 If f is an even (or odd) differentiable function on all its
domain, the derivative f’ is odd (resp. even).

Proof. Since f is even, f(—z) = f(z) for any & = dom f. Let us diflerentiate both
sides. As f(—z) is the composition of z -+ —z and y  f(y), its derivative
reads — f'(—z). Then f'(—z) = —f'(z) for all z « dom £, so f is odd.
Similarly if f is odd.

We reckon it could be useful to collect the derivatives of the main elementary
functions in one table, for reference.

Daz®=an®* (Vo € R)
D sinz =cosz
D cosz = —sinz
D tanz =1+ tan’z = =
cos? z
D arcsinz = -
g
D arccos .
T=———
ETR
D arctanz = T
Da* = (loga)a® in particular, De® =e®
D log,, |z| = ! in particular, D log|z|= .
Ba T (loga) T p 3 g = T

6.3 Where differentiability fails

It was noted earlier that the function f(z) = |z| is continuous but not differentiable
at the origin. At each other point of the real line f is differentiable, for it coincides
with the line y = z when & > 0, and with y = —z for z < 0. Therefore f'(z) = +1
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for z > 0 and f'(z) = —1 on ¢ < 0. The reader will recall the sign function
(Example 2.1 iv)), for which

D |z| = sign(z), for all z # 0.

The origin is an isolated point of non-differentiability for y = |z|.
Returning to the expression (6.2) for the difference quotient at the origin, we
observe that the one-sided limits exist and are finite:

: g :
e L lim =% =—1.
lim 1, im 1

This fact suggests us to introduce the following notion.

Definition 6.13 Suppose f is defined on a right neighbourhood of o € R. It

is called differentiable on the right at g if the right limit of the difference
A
guotient Zé between o and x exists finite, for = approaching xo. The real

number

f(z) — flzo) _ lim f(zo + Az) — f(zo)

z—a} T — T Az—0+ Az

is the right (or backward) derivative of f at zq. Similarly it goes for the
left (or forward) derivative f’ (zq).

If f is defined only on a right (resp. left) neighbourhood of zg and is differenti-
able on the right (resp. the left) at zo, we shall simply say that f is differentiable
at zo, and write f'(zo) = fi(20) (resp. f'(z0) = f’ (20)).

From Proposition 3.24 the following criterion is immediate.

Property 6.14 A map f defined around a point zo € R is differentiable at
xo if and only if it is differentiable on both sides at zg and the left and right
derivatives coincide, in which case

f'(=o) = fi(zo) = fL (o).

Instead, if f is differentiable at o on the left and on the right, but the two
derivatives are different (as for f(z) = |z| at the origin), zo is called corner
(point) for f (Fig.6.2). The term originates in the geometric observation that the
right derivative of f at o represents the slope of the right tangent to the graph
of f at By = (o, f(z0)), i.e., the limiting position of the secant through Py and
P = (z, f(z)) as £ > o approaches . In case the right and left tangent (similarly
defined) do not coincide, they form an angle at Fp.
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forz > 0 and f* () = —1 on & < 0. The reader will recall the sign function
(Example 2.1 iv)), for which

D |z| = sign(z), for all z # 0.

The origin is an isolated point of non-differentiability for y=|z|
Returning to the expression (6.2) for the difference quotient at the origin, we
observe that the one-sided limits exist and are finite:

-1 1 S
m—)%!"“ Az ; et

This fact suggests us to introduce the following notion.

Definition 6.13 Suppose f is defined on a Tight neighbourhood of zo € R. It
is called differentiable on the right at g if the right limit of the difference

quotient —j—i between xo and = exists finite, for x approaching xo. The real

number
4 : T ; Az) —
Fedul s f%)T;’:rf—@ = Jim Lo o)

is the right (or backward) derivative of [ at zg. Similarly it goes for the
l left (or forward) derivative fL(zo).

If f is defined only on a right (resp. left) neighbourhood of Zp and is differenti-
able on the right (resp. the left) at o, we shall simply say that f is differentiable
at o, and write f'(zq) = Fi(zo) (resp. f'(zo) = f" (z0)).

From Proposition 3.24 the following criterion is immediate.

Property 6.14 4 map f defined around a point zg € R is differentiable at
zo if and only if it is differentiable on both sides at zg and the left and right
derivatives coincide, in which case

f'(@o) = fi(z0) = £ (o).

Instead, if f is differentiable at zp on the left and on the right, but the two
derivatives are different (as for f(z) = |z| at the origin), o is called corner
(point) for f (Fig. 6.2). The term originates in the geometric observation that the
right derivative of f at z represents the slope of the right tangent to the graph
of f at Py = (zo, f(z0)), i.e., the limiting position of the secant through P and
P=(z,f(z)) asz > z approaches 7. In case the right and left tangent (similarly
defined) do not coincide, they form an angle at B,
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AN - ~N

o,

Figure 6.2. Non-differentiable maps: the origin is a corner point (left), a point with
vertical tangent (middle), a cusp (right)

Other interesting cases occur when the right and left limits of the difference
quotient of f at zg exist, but one at least is not finite. These will be still denoted
by fi(zo) and f (o).

Precisely, if just one of Fi (o), fL (o) is infinite, we still say that zg is a corner
point for f.

If both f! (zo) and f” (zo) are infinite and with same sign (hence the limit of
the difference quotient is +o0 or —00), Zg is a point with vertical tangent for
f. This is the case for f(z) = L

When f4 (zo), f’ (zo) are finite and have different signs, zg is called a cusp
(point) of f. For instance the map f(z) = \/|z| has a cusp at the origin, for

Fa0) = 1 M VBRI 1

. = lim ———— = 400,
Gesgk '@ z—0% sign(z) [z| = z—0t sign(z) v/|z]|

Another criterion for differentiability at a point zq is up next. The proof is
deferred to Sect. 6.11, for it relies on de ’'Hépital’s Theorem.

Theorem 6.15 Let f be continuous at To and differentiable at all points
T # Tp in a neighbourhood of zo. Then f is differentiable at zg provided that
the limit of f'(z) for z — zo exists finite. If so,

f'(%o) = lim f'(z).

T—=+Ip

Example 6.16
We take the function

@ = {

asin2z -4  ifa<0,
blz—1)+e* ifz>0,
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and ask ourselves whether there are real numbers @ and b rendering f differen-
tiable at the origin. The continuity at the origin (recall: differentiable implies
continuous) forces the two values
lim f(z)=—4, lim f(z) = f(0)=—-b+1
z—0t

=0~
to agree, hence b = 5. With b fixed, we may impose the equality of the right
and left limits of f'(z) for  — 0, to the effect that f’(z) admits finite limit for
2z — 0. Then we use Theorem 6.15, which prescribes that

I. I — 2 2 - 3 ! = iy
Jim f(z) z1_1’:51_ 2a cos 2z = 2a, and xl_lf& f(z) JL’EL

are the same, so a = 3. o

(5+€e%)=6

Remark 6.17 In using Theorem 6.15 one should not forget to impose continuity

at the point zo. The mere existence of the limit for f’ is not enough to guarantee

[ will be differentiable at zq. For example, f(z) = = + signz is differentiable at

every x # 0: since f'(z) = 1, it necessarily follows I'Ln}} f'(z) = 1. The function is
T—

nonetheless not differentiable, because not continuous, at = = 0. &)

6.4 Extrema and critical points

Definition 6.18 One calls zo € dom f a relative (or local) maximum
point for f if there is a neighbourhood I,.(xo) of zo such that

Yz € I.(zo) N dom f, f(z) < f(zo).

Then f(zo) is a relative (or local) maximum of f.
One calls zo an absolute maximum point (or global maximum point)
for f if

Veedomf,  f(z) < f(zo),

and f(zo) becomes the (absolute) maximum of f. In either case, the maz-
tmum is said strict if f(z) < f(zo) when z # z.

Exchanging the symbols < with > one obtains the definitions of relative and
absolute minimum point. A minimum or maximum point shall be referred to
generically as an extremum (point) of f.

Examples 6.19

i) The parabola f(z) = 142z —2? = 2— (z—1)? has a strict absolute maximum
point at £o = 1, and 2 is the function’s absolute maximum. Notice the derivative
f'(z) = 2(1 — z) is zero at that point. There are no minimum points (relative or
absolute).
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To g To

Figure 6.3. Types of maxima

ii) For g(z) = arcsinz (see Fig. 2.24), 2y = 1 is a strict absolute maximum point,
with maximum value 7 The point z; = —1 i g strict absolute minimum, with
value —%. At these extrema g is not differentiable. O

We are interested in finding the extremum points of a given function. Provided

the latter is differentiable, it might be useful to look for the points where the first
derivative vanishes.

Definition 6.20 A critical point (or stationary point) of f is a point z,
at which f is differentiable with derivative f'(zg) = 0.

The tangent at a critical point is horizontal.

To I I3

Figure 6.4. Types of critical points

Theorem 6.21 (Fermat) Suppose f is defined in a full neighbourhood of a
point zo and differentiable at Zo. If 2o is an eztremum point, then it is critical

Jor f, .6,
f'(xo) = 0.
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6.5 Theorems of Rolle, Lagrange, and Cauchy

We begin this section by presenting two theorems, Rolle’s Theorem and Lagrange’s
or Mean Value Theorem, that are fundamental for the study of differentiable maps
on an interval.

Theorem 6.22 (Rolle) Let f be a function defined on a closed bounded
interval [a,b], continuous on [2,8] and differentiable on (a,b) (at least). If
f(a) = £(b), there exists an @o € (a,b) such that

f’(ﬁ‘:g) =0.

In other words, f admits at least one critical point in (a,b).

Proof. By the Theorem of Weierstrass the range f([a,b]) is the closed interval
[m, M) bounded by the minimum and maximum values m, M of the map:

m = min f(w)=f($m)s M = max f(x):f{xM):

z€[a,b] z=[a,b]

for suitable z,,, 2, ¢ [a, b].

In case m = M, f is constant on [a,b], so in particular f'(z) = 0 for any
z ¢ (a,b) and the theorem follows.

Suppose then m < M. Since m < f(a) = F(b) < M, one of the strict
Inequalities f(a) = f(b) < M, m < f(a) = f(b) will hold.

If f(a) = f(b) < M, the absolute maximum point zys cannot be ¢ nor b;
thus, zps « (a, b) is an interior extremum point at which f is differentiable.
By Fermat’s Theorem 6.21 we have that ZM = T is a critical point.

Itm < f(a) = #(b), one proves analogously that ., is the critical point

zg of the claim.

The theorem proves the existence of one critical point in (a, b); Fig. 6.5 shows that
there could actually be more.

F(@) = f(8) oo b b N .

\x_.z' :

; & %0 b

Figure 6.5. Rolle’s Theorem
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Proof. To fix ideas, assume z; is a relative maximum point and that I, (zo) is a
neighbourhood where f(z) < f (zo) for all z = I,.(xp). On such neighbour-
hood then Af= f(z) —f(=zp) < 0.

. ; Af
If £ > zp, hence Ay = 7 — Zo > 0. the difference quotient ——-J‘ is non-
4 %
positive. Corollary 4.3 implies

fim 4@) = f(zo) _

< 0.
m—vi.‘cg' T — o

Af .
Vice versa, if z < g, ie., Az < 0, then ji is non-negative, so
£
lim £&)= (=) o
-3y T —Zg

By Property 6.14,

f'(zo) = lim M: lim M,

zad T — o z—zy T —=%p

so f'(zo) is simultaneously < 0 and = 0, hence zero.
A similar argument holds for relative minima. o

[

Fermat’s Theorem 6.21 ensures that the extremum points of a differentiable
map which belong to the interior of the domain should be searched for among
critical points.

A function can nevertheless have critical points that are not extrema, as in
Fig.6.4. The map f(z) = 23 has the origin as a critical point (f/(z) = 322 = 0 if
and only if z = 0), but admits no extremum since it is strictly increasing on the
whole R.

At the same time though, a function may have non-critical extremum point
(Fig. 6.3); this happens when a function is not differentiable at an extremum that
lies inside the domain (e.g. f(z) = ||, whose absolute minimum is attained at the
origin), or when the extremum point is on the boundary (as in Example 6.19 ii)).
The upshot is that in order to find all extrema of a function, browsing through
the critical points might not be sufficient.

To summarise, extremum points are contained among the points of the domain
at which either

i) the first derivative vanishes,
ii) or the function is not differentiable,
iii) or among the domain’s boundary points (inside R).
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Theorem 6.23 (Mean Value Theorem or Lagrange Theorem) Let f
be defined on the closed and bounded interval [a,b], continuous on [a.b] and
differentiable (at least) on (a,b). Then there is a point zo € (a,b) such that

1018 _ i) (69)

EBvery such point o we shall call Lagrange point for f in (a,b).

Proof. Introduce an auxiliary map

o@) = fo) - TO =@ 4

b—a

defined on [a,b]. It is continuous on [a,b' wnd differentiable ou (a, b), as
difference of f and an affine map, which is differentiable on all of R. Note

7o) =@ - 18-

It is easily seen that
9(@)=f(a),  g(b) = f(a),

so Rolle’s Theorem applies to g, with the consequence that there is a point
zo « (a,b) satisfying

o(z0) = f'(eo) ~ TO =@ _g
But this is exactly (6.9). ~
FO) o ,

~
= s
. ~

.f';‘“\

-
~
-
~
“
. ~
. .
4 ~
e ~
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g mm om ot
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Figure 6.6. Lagrange point for f in (a,b)
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The meaning of the Mean Value Theorem is clarified in Fig.6.6. At each Lag-
range point, the tangent to the graph of f is parallel to the secant line passing
through the points (a, f(a)) and (b, £(b)).

Example 6.24

Consider f(z) = 1+ z + v/1 — 22, a continuous map on its domain [~1,1] as
composite of elementary continuous functions. It is also differentiable on the
open interval (—1,1) (not at the end-points), in fact

T

d =]—=—.

U

Thus f fulfills the Mean Value Theorem’s hypotheses, and must admit a Lag-

range point in (—1,1). Now (6.9) becomes
_ =11

1= L= g =1 - 28

I-(-1) 7.

satisfied by zp = 0. a

The following result is a generalisation of the Mean Value Theorem 6.23 (which
is recovered by g(z) = =z in its statement). It will be useful during the proofs
of de I'Hopital’s Theorem 6.41 and Taylor’s formula with Lagrange’s remainder
(Theorem 7.2).

Theorem 6.25 (Cauchy) Let f and g be maps defined on the closed,
bounded interval [a,b], continuous on [a,b] and differentiable (at least) on
(a,b). Suppose g'(z) # 0 for all x € (a,b). Then there exists xo € (a,b) such

that
f(0) - fa) _ f'(z0)
g(d) —g(a)  g'(mo)

(6.10)

Proof. Note first that g(a) # g(b), otherwise Rolle’s Theorem would have g’(z)
vanish somewhere in (a, b), against the assumption.
Take the function

il ) = 2;%_}5%@@ ~g(a))

defined on [a,bd]. It is continuous on [a, b} and differentiable on the open
interval (a, b). because difference of maps with those propertics. Morcover

B = L) — %g’(w;

Ma) = f(a),  h(b) = f(a),
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the map h satisfies Rolle’s Theorem, so there must be a point zg = (a, b)

with
h'(zo) = f'(20) — ﬁgm g'(zo) =0,

which is exactly (6.10). O

6.6 First and second finite increment formulas

We shall discuss a couple of useful relations to represent how a function varies
when passing from one point to another of its domain.
Let us begin by assuming f is differentiable at . By definition

Y f(z) = f(x0)
T—+2g T — 2o

= f'(zo),

that is to say

(1D 21 _ ) - iy L= So) =Sl =20)

lim

Tz T — Ig T—Tg I —Xg

Using the Landau symbols of Sect. 5.1, this becomes
f(@) = f(=o) — f'(zo)(z — 20) = o(z — 20), = — =o.

An equivalent formulation is

f(z) — f(zo) = f'(z0)(z — o) + o(z — 7o), = — o, (6.11)

or

Af = f'(zo) Az + o(Az), Az — 0, (6.12)

by putting Az =z — 29 and Af = f(z) — f(zo).
Equations (6.11)-(6.12) are equivalent writings of what we call the first formula
of the finite increment, the geometric interpretation of which can be found in
Fig.6.7. It tells that if f'(zo) # 0, the increment Af, corresponding to a change
Az, is proportional to Ag itself, if one disregards an infinitesimal which is negligible
with respect to Axz. For Az small enough, in practice, Af can be treated as
f'(o) Az

Now take f continuous on an interval I of R and differentiable on the interior
points. Fix z; < z3 in I and note that f is continuous on [#1, 2] and differentiable
on (z1,%2). Therefore f, restricted to [z1,z2), satisfies the Mean Value Theorem,
so there is Z € (21, 23) such that

f(z2) — f(=1)

Ta — I

= f'(z),
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y = f(z)

f(zo + Az)

Af

f(zo)

y=t(z)

g g + Az

Figure 6.7. First formula of the finite increment

that is, a point Z € (z;,32) with

F(@2) = f(z1) = f'(2)(z2 — 31). (6.13)

We shall refer to this relation as the second formula of the finite increment.
It has to be noted that the point Z depends upon the choice of z; and z3, albeit
this dependency is in general not explicit. The formula’s relevance derives from
the possibility of gaining information about the increment f(zs) — f (z1) from the
behaviour of f’ on the interval [z1, z2].

The second formula of the finite increment may be used to describe the local
behaviour of a map in the neighbourhood of a certain zo with more precision than
that permitted by the first formula. Suppose f is continuous at zp and differentiable
around o except possibly at the point itself. If z is a point in the neighbourhood
of o, (6.13) can be applied to the interval bounded by zg and z, to the effect that

Af = f(z) Az, (6.14)

where Z lies between zo and z. This alternative formulation of (6.13) expresses the
increment of the dependent variable Af as if it were a multiple of Az; at closer
look though, one realises that the proportionality coefficient, i.e., the derivative
evaluated at a point near zo, depends upon Az (and on Zg), besides being usually
not known.

A further application of (6.13) is described in the next result. This will be
useful later.
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Property 6.26 A function defined on a real interval I and everywhere differ-
entiable is constant on I if and only if its first derivative vanishes identically.

Proof. Let f be the map. Suppose first f is constant, therefore for every oo « I,
f(z) — f(a0)
T — Xy

f'(zo) = 0 by definition of derivative.
Vice versa, suppose f has zero derivative on I and let us prove that fis
constant on I. This would be equivalent to demanding

f(ml) = f(mz), Vi y I = I.

Take z1,z2 = I and use formula (6.13) on f. For a suitable Z between
x1,T9, we have

the dilference guotient , with z ¢ I, # = =g, is zero. Then

f(z2) = f(=1) = f(3)(z2 — 1) =0,
thus f(z1) = f(z2). 0

6.7 Monotone maps

In the light of the results on differentiability, we tackle the issue of monotonicity.

Theorem 6.27 Let I be an interval upon which the map f is differentiable.
Then:

a) If f is increasing on I, then f'(z) >0 for all z € I.

b1) If f'(z) >0 for any z € I, then f is increasing on I;

b2) if f'(z) > 0 for all z € I, then f is strictly increasing on I.

Proof. Let us prove claim a). Suppose f increasing on I and consider an interior
point zp of I. For all z ¢ I such that & < zg, we have

f(@)— flzo) <0 and z—z<0.

: ) Af . .
Thus, the ditference quotient f between zy and z is non-negative. On
o
the other hand, for any z = I with z > g,

f(z) = f(wo) 20 and z—1z¢>0.

v 5

L ) Aaf . -
Here too the diference quotient A between zy and z is positive or zero.
el 1
Altogether,
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f(z2)

f(z1)

I
|
|
1
1
1
1
1
I
i
I
1
1
Il

I T T2

Figure 6.8. Proof of Theorem 6.27, b)

Ar _ f(=) - f(o) >

0, vz a;
X T —Ip TT T
Corollary 4.3 on

lim —J"i = f’(:ﬂo)

T—rIp A{
yields f'(zg) > 0. As for the possible extremum points in I, we arrive
at the same conclusion by considering one-sided limits of the difference

quotient, which is always > 0.

Now to the implications in parts b). Take f with f'(z) > 0 for all z € I.
The idea is to fix points z; < zy in I and prove that f(z1) < f(as).
For that we use (6.13) and note that J'(Z) > 0 by assumption. But since
Ty — 1z > 0, we have

f@2) = f(z1) = f'(Z) (@2 — z1) > 0,
proving b1). Considering f such that f'(z) > 0for all z < I instead, (6.13)
implies f(z2) — f(z1) > 0, hence also b2) holds. =

The theorem asserts that if f is differentiable on I , the following logic equival-
ence holds:

flz) >0, Vzel < f is increasing on I.

Furthermore,

fl@)>0, Vzel = fis strictly increasing on 7I.

The latter implication is not reversible: [f strictly increasing on I does not imply
f'(z) > 0 for all z € I. We have elsewhere observed that f(z) = 23 is everywhere
strictly increasing, despite having vanishing derivative at the origin.

A similar statement to the above holds if we change the word ‘increasing’ with
‘decreasing’ and the symbols >, > with <, <.
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Corollary 6.28 Let f be differentiable on I and g an interior critical point.
If f'(z) > 0 at the left of zq and f'(z) <0 at its right, then g is a mazimum
point for f. Similarly, f'(z) <0 at the left, and > 0 at the right of o implies
To 1S a minimum point.

Theorem 6.27 and Corollary 6.28 justify the search for extrema among the
zeroes of f’, and explain why the derivative’s sign affects monotonicity intervals.

Example 6.29

The map f: R - R, f(z) = ze?® differentiates to f'(z) = (2¢ + 1)e**, whence
%o = —3 is the sole critical point. As f'(z) > 0 if and only if z > —3, f(zo) is an
absolute minimum. The function is strictly decreasing on (—o0, — 1] and strictly

increasing on [—3, +00). i

6.8 Higher-order derivatives

Let f be differentiable around zp and let its first derivative f' be also defined
around zp.

Definition 6.80 If f’ is a differentiable function at g, one says f is twice
differentiable at zp. The ezpression

(o) = (£')'(z0)

is called second derivative of f at zy. The second derivative of i
denoted f", is the map associating to & the number f"(z), provided the latter
s defined.

Other notations commonly used for the second derivative include

2

d
y”(Eo), a{(mﬂ)i sz(xﬂ) *
The third derivative, where defined, is the derivative of the second derivative:

F"(@o) = (£")' (o) -

In general, for any k > 1, the derivative of order k (kth derivative) of f at
Zg is the first derivative, where defined, of the derivative of order (k—1) of f at
To:

F® (o) = (F*=) (ao).
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Alternative symbols are:
k

; arf

Kk k

3y (o), 3ok @), D¥f(zo).
For conveniency one defines f(%)(zg) = f(zq) as well.

Examples 6.31

We compute the derivatives of all orders for three elementary functions.
i) Choose n € N and consider f(z) = z™. Then
nl

f’(fu") — nmnﬂl — (n _‘1)[3:?1—1
" n—=2 ! =
£(@) = n(n—1a""? = a2

f™z)=nn-1)-.-2.1z" " =nl,
More concisely,

]
B gy — ™ n—k
() e

with 0 < & < n. Furthermore, f(®+)(z) = 0 for any z € R (the derivative of
the constant function f(™)(z) is 0), and consequently all derivatives f(*) of order
k > n exist and vanish identically.

ii) The sine function f(z) = sinz satisfies f'(z) = cosz, f'(z) = —sinz,
f"(z) = —cosz and f*®(z) = sinz. Successive derivatives of f clearly re-
produce this cyclical pattern. The same phenomenon occurs for Y = COSZ.

iii) Because f(z) = e® differentiates to f'(z) = 2, it follows that F¥)(z) = e®
for every k > 0, proving the remarkable fact that all higher-order derivatives of
the exponential function are equal to e®. =

A couple of definitions wrap up the section.

Definition 6.32 A map f is of class C* (k > 0 ) on an interval I if f is
differentiable k times everywhere on I and its kth derivative F®) is continuous
on I. The collection of all C* maps on I is denoted by C*(I).

A map f is of class C® on I if it is arbitrarily differentiable everywhere on
I. One indicates by C*=(I) the collection of such maps.

In virtue of Proposition 6.3, if f € C*(I) all derivatives of order smaller or
equal than k are continuous on I. Similarly, if f € C>(I), all its derivatives are
continuous on I.

Moreover, the elementary functions are differentiable any number of times (so
they are of class C>) at every interior point of their domains.
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6.9 Convexity and inflection points

Let f be differentiable at the point zo of the domain. As customary, we indicate
by y = t(z) = f(zo) + f'(z0)(z — z0) the equation of the tangent to the graph of
f at zo.

Definition 6.33 The map f is convex at zg if there is a neighbourhood
I.(zg) C dom f such that

Vz € I.(z0), f(z) > t(z);

f is strictly convex if f(z) > t(z), Vz # 0.

The definitions for concave and strictly concave functions are alike (just change
>, > to £, <).

What does this say geometrically? A map is convex at a point if around that
point the graph lies ‘above’ the tangent line, concave if its graph is ‘below’ the
tangent (Fig. 6.9).

Example 6.34
We claim that f(z) = 2? is strictly convex at zp = 1. The tangent at the given
point has equation

Hz)=1+4+2(x—-1)=2z—-1.
Since f(z) > t(z) means 22 > 2z — 1, hence 2> — 2z +1=(z —1)2 > 0, ¢ hes
below the graph except at the touching point z = 1.

Definition 6.35 A differentiable map f on an interval I is convex on I if
it is convez at each point of I.

For understanding convexity, inflection points play a role reminiscent of ex-
tremum points for the study of monotone functions.

Ly =f(@) y=t()

oy =1a) T =@

e >
0 7

To Io

Figure 6.9. Strictly convex (left) and strictly concave (right) maps at zo
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Definition 6.86 The point zo is an inflection point for f if there is a

neighbourhood I,(zo) C dom f where one of the following conditions holds:
either

ifz <z, flz)<t(z),

fz>z0, f(z)=1t(2),

vz € I(zo), {

or
ifz <z, f(z)2>1t(z),
ifz>x, flz)<t(z)

In the former case we speak of an ascending inflection, in the latter the
inflection is descending.

Vz € I.(z0), {

In the plane, the graph of f ‘cuts through’ the inflectional tangent at an in-
flection point (Fig. 6.10).

The analysis of convexity and inflections of a function is helped a great deal
by the next results.

Theorem 6.37 Given a differentiable map f on the interval I,
a) if f is conver on I, then f’ is increasing on I.

b1) If f' is increasing on I, then f is convez on I;

b2) if f' is strictly increasing on I, then f is strictly convez on I.

Proof. See Appendix A.4.3, p. 455.

y = f(z)

o y =t(z)

y= f(z)

o Zo

Figure 6.10. Ascending (left) and descending (right) inflections at zo
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Corollary 6.38 If f is differentiable twice on I, then

a) f convex on I implies f"(z) >0 for all z € I.

b1) f"(z) > 0 for all z € I implies f conver on I;

b2) f"(x) >0 for all x € I implies f strictly convex on I.

Proof. This follows directly from Theorem 6.37 by applying Theorem 6.27 to the

function f'. O

There is a second formulation for this, namely: under the same hypothesis, the
following formulas are true:

f"(®) >0, Vzel <+ fisconvexonlI

and

f"(z)>0, Veel = fis strictly convex on I.

Here, as in the characterisation of monotone functions, the last implication has no
reverse. For instance, f(z) = 2 is strictly convex on R, but has vanishing second
derivative at the origin.

Analogies clearly exist concerning concave functions.

Corollary 6.39 Let f be twice differentiable around .

a) If zg is an inflection point, then f”(zo) = 0.

b) Assume f"(xo) = 0. If f” changes sign when crossing xo, then xg s an
inflection point (ascending if f"(z) < 0 at the left of zo and f(z) >0 at
its Tight, descending otherwise). If f” does not change sign, zo is not an
inflection point.

The proof relies on Taylor’s formula, and will be given in Sect. 7.4.

The reader ought to beware that f”(z) = 0 does not warrant z, is a point
of inflection for f. The function f(z) = 2* has second derivative f”(z) = 122
which vanishes at zp = 0. The origin is nonetheless not an inflection point, for
the tangent at zo is the axis y = 0, and the graph of f stays always above it. In
addition, f” does not change sign around zg.

Example 6.29 (continuation)
For f(z) = ze®® we have f”(z) = 4(z+1)e®® vanishing at 2; = —1. As f"(z) > 0
if and only if ¢ > —1, f is strictly concave on (—oo, —1) and strictly convex on
(=1, 400). The point z; = —1 is an ascending inflection. The graph of f(z) is
shown in Fig. 6.11. B
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[y

I Zo

Figure 6.11. Example 6.29

6.9.1 Extension of the notion of convexity

The geometrical nature of convex maps manifests itself by considering a gener-
alisation of the notion given in Sect.6.9. Recall a subset C' of the plane is said
convex if the segment P, P, between any two points Py, P, € C is all contained
in C.

Given a function f : I C R — R, we denote by

Ef={(z,y) eR*:z €1, y > f(z)}

the set of points of the plane lying above the graph of f (as in Fig.6.12, left).

Definition 6.40 The map f: I C R — R is called convex on I if the set
Ey is a convex subset of the plane.

It is easy to convince oneself that the convexity of E; can be checked by
considering points P;, P, belonging to the graph of f only. In other words, given

= ';z:|
=)

Ia. Ib T

T

Figure 6.12. The set E; for a generic f defined on I (left) and for f(z) = || (right)
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x1,x2 in I, the segment S12 between (z1, f(z1)) and (2, f(z2) should lie above
the graph.
Since one can easily check that any = between z; and x5 can be represented as
r—I

z=(1-t)z, +tzg with t=—"€][0,1],
I — I

the convexity of f reads
F(Q=t)z1 +tz2) < (1 —t)f(z1) +tf(z2)  Var,z2 € I,Vt € [0,1].

If the inequality is strict for z; # @2 and ¢ € (0, 1), the function is called strictly
convex on I.

For differentiable functions on the interval I, Definitions 6.40, 6.33 can be
proven to be equivalent. But a function may well be convex according to Defin-
ition 6.40 without being differentiable on I, like f(z) = |z| on I = R (Fig.6.12,
right). Note, however, that convexity implies continuity at all interior points of I,
although discontinuities may occur at the end-points.

6.10 Qualitative study of a function

We have hitherto supplied the reader with several analytical tools to study a
map f on its domain and draw a relatively thorough — qualitatively speaking —
graph. This section describes a step-by-step procedure for putting together all the
information acquired.

Domain and symmetries
It should be possible to determine the domain of a generic function starting from
the elementary functions that build it via algebraic operations and composition.
The study is greatly simplified if one detects the map’s possible symmetries and
periodicity at the very beginning (see Sect. 2.6). For instance, an even or odd map
can be studied only for positive values of the variable. We point out that a function
might present different kinds of symmetries, like the symmetry with respect to a
vertical line other than the y-axis: the graph of f(z) = e~!*~2 is symmetric with
respect to z = 2 (Fig. 6.13).

For the same reason the behaviour of a periodic function is captured by its
restriction to an interval as wide as the period.

Behaviour at the end-points of the domain
Assuming the domain is a union of intervals, as often happens, one should find the
one-sided limits at the end-points of each interval. Then the existence of asymp-
totes should be discussed, as in Sect. 5.3.
For instance, consider

_ log(2 —z)

f(z) = you
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>

2

Figure 6.13. The function f(z) = e l=—2l

Now, log(2 — z) is defined for 2 — z > 0, or z < 2; in addition, v/z2 — 2z has

domain 2% — 2z > 0,s0 z < 0 or ¢ > 2, and being a denominator, z # 0, 2.

Thus dom f = (—c0,0). Since 111}}1 f(z) = 400, the line z = 0 is a vertical left
z—0~

log(2 —
asymptote, while lim f(z) = lim M
e e

= 0 yields the horizontal left
asymptote y = 0.

Monotonicity and extrema

The first step consists in computing the derivative f' and its domain dom f’. Even
if the derivative’s analytical expression might be defined on a larger interval, one
should in any case have dom f’ C dom f. For example f(z) = logz has f'(z) = 1
and dom f = dom f’ = (0, +0c0), despite g(z) = % makes sense for any z # 0.
After that, the zeroes and sign of f’ should be determined. They allow to find the
intervals where f is monotone and discuss the nature of critical points (the zeroes
of f'), in the light of Sect. 6.7.

A careless analysis might result in wrong conclusions. Suppose a map f is
differentiable on the union (a,b) U (b, c) of two bordering intervals where f' > 0.
If f is not differentiable at the point b, deducing from that that f is increasing
on (a,b) U (b,c) is wrong. The function f(z) = —21 satisfies f/(z) = & > 0 on
(=0,0) U (0,+00), but it is not globally increasing therein (e.g. f(—1) > f(1));
we can only say f is increasing on (—o0,0) and on (0, +0c) separately.

Recall that extremum points need not only be critical points. The function

f(z) = H_xg!

lute maximum. At the other extremum z = 0, the function is not differentiable,
although f(0) is the absolute minimum.

defined on z > 0, has a critical point £ = 1 giving an abso-

Convexity and inflection points
Along the same lines one determines the intervals upon which the function is

convex or concave, and its inflections. As in Sect. 6.9, we use the second derivative
for this.

Sign of the function and its higher derivatives
When sketching the graph of f we might find useful (not compulsory) to establish
the sign of f and its vanishing points (the z-coordinates of the intersections of the
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graph with the horizontal axis). The roots of f(z) = 0 are not always easy to find
analytically. In such cases one may resort to the Theorem of existence of zeroes
4.23, and deduce the presence of a unique zero within a certain interval. Likewise
can be done for the sign of the first or second derivatives.

The function f(z) = zlogz — 1 is defined for z > 0. One has f(z) < 0 when
< 1. On z > 1 the map is strictly increasing (in fact f'(z) = logz + 1 > 0 for
z > 1/e); besides, f(1) = —1 < 0 and f(e) = e — 1 > 0. Therefore there is exactly
one zero somewhere in (1,e), f is negative to the left of said zero and positive to
the right.

6.10.1 Hyperbolic functions

An exemplary application of what seen so far is the study of a family of functions,
called hyperbolic, that show up in various concrete situations.
We introduce the maps f(z) = sinhz and g(z) = coshz by

T _ g~ T =
sinhz = E—g_ and coshz = #—

They are respectively called hyperbolic sine and hyperbolic cosine. The ter-
minology stems from the fundamental relation

coshgsc—sinhza::l, VeelR,

whence the point P of coordinates (X,Y) = (coshz, sinh z) runs along the right
branch of the rectangular hyperbola X2 — Y2 =1 as z varies.

The first observation is that dom f = dom g = R; moreover, f(z) = —f(—=z)
and g(z) = g(—=z), hence the hyperbolic sine is an odd map, whereas the hyperbolic
cosine is even. Concerning the limit behaviour,

lim sinhz = 400, lim coshz = +oc.
z—+too r—+oo

This implies that there are no vertical nor horizontal asymptotes. No oblique
asymptotes exist either, because these functions behave like exponentials for z —
cc. More precisely

1 1
sinhz ~ ﬂ:gel"’i ; coshz ~ -Q—BM ; x — too.

It is clear that sinhz = 0 if and only if z = 0, sinhz > 0 when z > 0, while
coshz > 0 everywhere on R. The monotonic features follow easily from

Dsinhz = coshz and Dcoshz =sinhz, VreR.

Thus the hyperbolic sine is increasing on the entire R. The hyperbolic cosine is
strictly increasing on [0, +-00) and strictly decreasing on (—oc, 0], has an absolute
minimum cosh0 =1 at z =0 (so coshz > 1 on R).
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Figure 6.14. Hyperbolic sine (left) and hyperbolic cosine (right)

Differentiating once more gives
D’sinhz =sinhz  and  D2?coshz =coshz, VzeR,

which says that the hyperbolic sine is strictly convex on (0,400) and strictly
concave on (—o0,0). The origin is an ascending inflection point. The hyperbolic
cosine is strictly convex on the whole R. The graphs are drawn in Fig. 6.14.

In analogy to the ordinary trigonometric functions, there is a hyperbolic
tangent defined as

sinh z 3 e — 1
coshz e +1°

Its domain is R, it is odd, strictly increasing and ranges over the open interval
(-1,1) (Fig.6.15).

The inverse map to the hyperbolic sine, appropriately called inverse hyper-
bolic sine, is defined on all of R, and can be made explicit by means of the
logarithm (inverse of the exponential)

sinh™'z = log(z + V22 +1), z€cR. (6.15)
1
_______ R e e
=1

Figure 6.15. Hyperbolic tangent
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There normally is no confusion with the reciprocal 1 /sinhz, whence the use of
notation'. The inverse hyperbolic cosine is obtained by inversion of the hyper-
bolic cosine restricted to [0, +o0)

cosh™ z=log(z + Va2 -1), z€[l,+00). (6.16)

To conclude, the inverse hyperbolic tangent inverts the corresponding hyper-
bolic map on R

1 14z
= - : A7
2log1_z, z € (-1,1) (6.17)

tanh 'z =

The inverse hyperbolic functions have first derivatives

1 1
Dsinh_la:=——-, Dcosh"lw=———,
VI +11 g \,f'&'}i -1 (6.18)
Dtanh™ z = .
1-—22

6.11 The Theorem of de I'Hépital

This final section is entirely devoted to a single result, due to its relevance in com-
puting the limits of indeterminate forms. Its proof can be found in Appendix A.4.2,
p. 4562. As always, c is one of g, 3:0+, Zy , +00, —00.

Theorem 6.41 Let f,g be maps defined on a neighbourhood of ¢, except
possibly at ¢, and such that

lim f(z) = lim g(2) = L,

T—}C

where L = 0,400 or —c0. If f and g are differentiable around c, except
possibly at ¢, with g’ # 0, and if
f'(z)
m
z—e g'(z)

exists (finite or not), then also

/()

ezists and equals the previous limit.

! Some authors also like the symbol Arcsinh.
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Under said hypotheses the results states that

i 28 fi)
= 9(z)  zoc g'(z)’ 520

Examples 6.42
i) The limit

2z 2z

. e —gm
lim —
z—0 sindg
gives rise to an indeterminate form of type %. Since numerator and denominator
are differentiable functions,
. 2e% 4 2%
lim ————

_4
z=0 5cosbz 5

Therefore
g2z _ e—?z 4

lim —— _ =
z—0 sinbzx 5

ii) When the ratio f'(z)/g'(z) is still an indeterminate form, supposing f and g
are twice differentiable around ¢, except maybe at ¢, we can iterate the recipe of
(6.20) by studying the limit of f"(2)/9" (), and so on.

Consider for instance the indeterminate form 0/0

Jim 143z — \/m '
a—0 zsinz
Differentiating numerator and denominator, we are lead to
lim 3= 3vVI+22 ’
z=0s8InT 4 T cosz

still of the form 0/0. Thus we differentiate again
3

; —A 3
lim —2#% 2
z—0 2¢c08Z — zsinz 2

Applying (6.20) twice allows to conclude

lim LT3z —v(1+22)2 3

_ [
z—0 sin? z 2’

Remark 6.43 De ’'Hépital’s Theorem is a sufficient condition only, for the exist-
ence of (6.19). Otherwise said, it might happen that the limit of the derivatives’
difference quotient does not exist, whereas we have the limit of the functions’ dif-
ference quotient. For example, set f(z) = z +sing and 9(z) = 2z + cosz. While

the ratio f'/g’ does not admit limit as z — +00 (see Remark 4.19), the limit of
f/g exists:

z +sinz . z+o(z)

E
i = lim
o340 22 +C0ST  z-+oc 27 + o(z)

1
R
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6.11.1 Applications of de 'Hépital’s theorem
‘We survey some situations where the result of de ’'Hopital lends a helping hand.

Fundamental limits
By means of Theorem 6.41 we recover the important limits

T

lim — = +oo, lim |z[%® =0, VaeR, (6.21)
z—r+oo T T——00

i BT _ o lim z%logz =0, Va > 0. (6.22)
z—+oc TN z—0+

These were presented in (5.6) in the equivalent formulation of the Landau symbols.
Let us begin with the first of (6.21) when o = 1. From (6.20)

For any other e > 0, we have

et l1es\“ 1 e’ \“
im —= lim (-—) =—( lim — | =+4o0.
z—+o0 T® zo+o0 \ o i— a® \y—+oo y
At last, for o < 0 the result is rather trivial because there is no indeterminacy. As
for the second formula of (6.21)

A . T (23 X T {23 A {23
lim |z|%® = lim le] = lim l=1* = lim L =o.
T——occ Tz——oo g~ % z—-cc el y—+oc e¥
Now to (6.22):
log z , = 1 1
1 =% lim L _=— lim —=0
z—+oo X z—r+oo LY @ z—+oo T
and
: . logz . 1 1 ..
lim z%logz = lim 5 - = lim —%—— =—— lim 2*=0.
z—0+ 20t 7% g0t (—a)zToT a z—0+

Proof of Theorem 6.15
We are now in a position to prove this earlier claim.

Proof. By definition only,
f(z) — f(=o)

f'(mo) = lim —————%;
T—-To T — Tp
but this is an indeterminate form, since
lim (f(z)— f(zo0)) = lim (z —z) =0,
T—+xo ZIEn

licisee de 'Tlopital implies

f'(z0) = lim 1) Z

z—mg 1
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Computing the order of magnitude of a map
Through examples we explain how de I'Hépital’s result detects the order of mag-
nitude of infinitesimal or infinite functions, and their principal parts.
The function
f(z) =€¢* —1—sing
is infinitesimal for z — 0. With infinitesimal test function ¢(z) = z we apply the
theorem twice (supposing for a moment this is possible)

. € —1—sing . €% —cosz . e’ +sing
lim = lim T— = lim ——— e,
z—0 i z—0 e z—0 e — 1)ge-

When & = 2 the right-most limit exists and is in fact 5- This fact alone justifies the
use of de I'Hépital’s Theorem. Thus f (z) is infinitesimal of order 2 at the origin
with respect to ¢(z) = z; its principal part is p(z) = 322

Next, consider

f(z) =tang,
an infinite function for z — 5 - Setting ¢(z) = = We have
g
(=3
. tanz X . ) g
lim ——~ = lim sinz lim (3 )
z—Z- ( 1 ) TG~ T—F- cosT
-z

While the first limit is 1, for the second we apply de I'Hépital’s Theorem

o -1
i 29", oG-
z—3- COSZ T—E - —sing

The latter equals 1 when o = 1, so tan z is infinite of first order, for £ — 7, with

respect to ¢(z) =

e The principal part is indeed o(z).
z_

6.12 Exercises

1. Discuss differentiability at the point zq indicated:

a) fl@)=a+|z-1], zp=1 [b)] f(z) =sinlzl, @o=0
e~z g0
f(x>={ » 20=0 d) f@)=vi+a®, zr=-1

0 =0
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2. Say where the following maps are differentiable and find the derivatives:

2)| f(z) = 2v/a] b) f(z) = coslal
2 % : 2 waz z

0 f'(:c)={$ +1 wazo, @f($)={:c +z-5 T.wal,

e —z ifz<0 z—4 ife<i1

3. Compute, where defined, the first derivative of:
a) f(z)=3zV/1+ 22 b) f(z) = log|sinz|
2 1

¢) f(z) = cos (e="+1) d) @) = oz

4. On the given interval, find maximum and minimum of;

a) f(z)=sinz+cosz, [0, 27]
)] fl@) =2 —|e+1]-2, [-2,1]

5. Write the equation of the tangent at zo to the graph of the following maps:

|2)] fz)=log(32-2), @=2  b) fl@=17=, @0=1
f($)=e 2w+11 0 =0 d) f(:c):sin%, m{):%

[©]

Verify that f(z) = 5z + 23 4 22° is invertible on R, f~! is differentiable on
the same set, and compute (f~1)(0) and (f~1)'(8).

@ Prove that f(z) = (z — 1)&3“”‘2 + arctan(log ) + 2 is invertible on its domain
and find the range.

z+1
T+ 2

has no zeroes apart from xzg = —1.

@ Verify that f(z) =log(2 +z) + 2

@] Determine the number of zeroes and critical points of

_zlogz—1

f(z)
Discuss relative and absolute minima of the map
, 1
f(z) = 2sinz + 5 cos 2z

on [0, 27].
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Find the largest interval containing zo = § on which the function

f(z) =logz —

logz

has an inverse, which is also explicitly required. Calculate the derivative of the
inverse at the origin.

Verify that

log(l4+z) <z, Vo> —1.

Sketch a graph for f (z) = 32°—502%+135z. Then find the largest and smallest
possible numbers of real roots of f (%) + k, as k varies in the reals.

Consider f(z) = z* — 2/logz and
a) find its domain;
b) discuss monotonicity;

c) prove the point (e* — 2, e) belongs to the graph of f~1, then compute the
derivative of f~1 at e* — 2

Regarding

2 __
f(a) = ;4-13

a) find domain, limits at the domain’s boundary and possible asymptotes;

b) study the intervals of monotonicity, the maximum and minimum points,
specifying which are relative, which absolute;

c) sketch a graph;

d) define

?

2 = {f(:c+x/§) ifz>0,
fle—v3) ifz<o0.

Relying on the results found for f draw a picture of g, and study its
continuity and differentiability at the origin.

Given
f(@) = Vl]z? — 4| -z,

a) find domain, limits at the domain 's boundary and asymptotes;
b) determine the sign of f;

c) study the intervals of monotonicity and list the extrema;

d) detect the points of discontinuity and of non-differentiability;
e) sketch the graph of f.

Consider
f(z) = Ve —1.
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a) What does f(z) do at the boundary of the domain?
b) Where is f monotone, where not differentiable?

c) Discuss convexity and find the inflection points.

d) Sketch a graph.

[18.] Let
flz)=1—-¢"lo 4 g

be given.

a) Find domain and asymptotes, if any;

b) discuss differentiability and monotonic properties;

¢) determine maxima, minima, saying whether global or local;
d) sketch the graph.

@ Given

determine

a) the monotonicity;

b) the relative extrema and range im f;

c) the points where f is not continuous, or not differentiable;
d) a rough graph;

e) whether there is a real « such that

g9(z) = f(z) — ajz — 3|

is of class C! over the whole real line.

Given

f(z) = e*(2® - 8lz - 3| - 8),

_ log|1 + x|

&)= Ty

find

a) domain, behaviour at the boundary, asymptotes,

b) monotonicity intervals, relative or absolute maxima and minima,
c¢) convexity and inflection points,

d) and sketch a graph.

21.| Let
zlog |z|
T) = ——5—.
f(=) 1+ log? ||
a) Prove f can be prolonged with continuity to R and discuss the differenti-
ability of the prolongation g;
b) determine the number of stationary points g has;
¢) draw a picture for g that takes monotonicity and asymptotes into account.
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Determine for

|z] + 3

z) = arctan

e L

a) domain, limits at the boundary, asymptotes;

b) monotonicity, relative and absolute extremum points, inf f and sup f;
c) differentiability;

d) concavity and convexity;

e) a graph that highlights the previous features.

Consider the map

#(z) = arcsin \/2e% — 2%

and say

a) what are the domain, the boundary limits, the asymptotes of f(z);

b) at which points the function is differentiable;

¢) where f is monotone, where it reaches a maximum or a minimum;

d) what the graph of f(z) looks like, using the information so far collected.
e) Define a map f continuously prolonging f to the entire R.

6.12.1 Solutions
1. Differentiability:

a) Not differentiable.
b) The right and left limits of the difference quotient, for z — 0, are:

i SRZ = 0_ 1, . sin(—z) — 0

=-1.
z—0+ x—0 =0~ z—0

Consequently, the function is not differentiable at zo = 0.
¢) For z # 0 the map is differentiable and

fie) = e

Moreover lliﬂ] flz) = :]cliﬁj f'(z) = 0, so f is continuous at zo = 0. By
Theorem 6.15, it is also differentiable at that point.

d) Not differentiable.

2. Dilferentiabiliiy:

a) Because

f{$)={xﬁ ifz>0,

z/—z ifz <0,
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f' is certainly differentiable at & # 0 with

Fle) = {g\/i ifz>0,

g— —z ifz<0.

The map is continuous on R (composites and products preserve continuity),
hence in particular also at = 0. Furthermore, lim f'(z) = lLim f'(z) =0,
z—0+ z—+0-

making f differentiable at z = 0 , with f(0) = 0.

b) Differentiable on R, f/(z) = —sinz.

2z ifz>0,

-1 ifz<O.

d) The map is clearly continuous for = # 1; but also at z = 1, since

c) Differentiable everywhere, f'(z) = {

lim (2> + 2 —5) = f(1) = -3 = lim (z — 4).
=1+ z—1-

The derivative is .
20+1 ifx>1,

f;(w}={1 ifr<l,

so f is differentiable at least on R\ {1}. Using Theorem 6.15 on the right- and
left-hand derivatives independently, gives

fi() = lim f'(z)=3, f.(1)= lim f(z)=1.
At the point = 1, a corner, the function is not differentiable.

3. Derivatives:

522 + 3

a) f'te) = T+ b) f'(z) = cotanz

2 . logz +1
¢) f'(z) = —2ze® tlgine® ! d) f'(z) = ——g—2
z?log” z
4. Maxima and minima:
Both functions are continuous so the existence of maxima and minima is guaran-

teed by Weierstrass’s theorem.

a) Maximum value /2 at the point z = %; minimum —+/2 at £ = 37. (The
interval’s end-points are relative minimum and maximum points, not absolute.)
b) One has
2 .
+z—1 ifz<—1,
f@={2, .
¢ —z-3 ifz>-1.

The function coincides with the parabola y = (z + 1)? — 2 for ¢ < —1. The
latter has vertex in (—%, —2) and is convex, so on the interval [-2,—1] of
concern it decreases; its maximum is 1 at z = —2 and minimum —1 at z = —1.
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1

|
=t

S - S [ |25

13 K

Figure 6.16. Graph of f(z) = 2% — |z + 1| — 2

For z > —1, we have the convex parabola y = (z— 3)2— 22 with vertex (3

-3,
13

Il

2 2z
Besides, f(—1) = —1 and f(1) = —3, so the maximum —1 is reached at z = —1.

In conclusion, f has minimum —22 (for z = 3) and maximum 1 (at z = —2);
see Fig. 6.16.

Thus on [-1,1], there is a minimum point z = 1 with image f(3)

5. Tangent lines:
a) Since
3 3
i = 2) = J = —
f@)=g= f@=lgs, r@=1,

the equation of the tangent is

v=F@)+ D@2 =logt+ J(@-2).

b) y=1.

c) As
! = e\/ﬁ'ﬁ —_ —
Fa)=S—=. §0=r0)=e,

the tangent has equation
y=f0)+ f(0)z=e+ezx.
d) y=n*z-1).

6. As sum of strictly increasing elementary functions on R, so is our function.
Therefore invertibility follows. By continuity and because 1115:1 flx) = +oo,
T—rTOQ

Corollary 4.30 implies im f = R. The function is differentiable on the real line,
f'() =5+ 322 4 102* > 0 for all z € R; Theorem 6.9 tells that £~ is differenti-
able on R. Eventually f(0) =0 and f(1) = 8, so
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FYO=F=5 = VEO= 5=

7. On the domain (0,+00) the map is strictly increasing (as sum of strictly in-
creasing maps), hence invertible. Monotonicity follows also from the positivity of
1

"z) = 2m2—2x+1e°’2+——.
Fi(=) =( ) :.':(1+log23:)

In addition, f is continuous, so Corollary 4.30 ensures that the range is an interval
bounded by inf f and sup f:

: . kg T X
lnff_zl—lﬁ)l"‘f(x)_‘_l_-ﬁ-'-;!_l__ supf—mgrfwf(z)—+oo

2 b
Therefore im f = (1 — Z, +00).

8. The map is defined only for z > —2, and continuous, strictly increasing on the
whole domain as

_d & 2
T z+2 7 (2+42)

fl(z) = 50, Ve > —2.

Therefore f(z) < f(1) =0 for z <1 and f(z) > f(1) =0 for z > 1.
9. The domain is & > 0. The zeroes solve

zlogz—1=0 ie. logw:%.
If we set h(z) =logz and g(z) = 1, then
h(1)=0<1=g(1) and hle)=1> % = g(e);

Corollary 4.27 says there is an zo € (1,e) such that h(zy) = g(zo). Such a point
has to be unique because  is strictly increasing and g strictly decreasing. Thus f
has only one vanishing point, confined inside (1, ¢).

For the critical points, we compute the first derivative:

; z*(logz 4+ 1) — 2z(zlogz —1) z+2—zlogz
Fz)= = = p .

The zeroes of f’ are then the roots of

+x

2
z+2—-zlogz =0 le. logz =

Let g(z) = 22 =1+ 2, whence

he)=1<1+2=g(c) and h(e2)=2>1+e%:§(e2);
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again, Corollary 4.27 indicates a unique Zo € (e, e?) with A(Z) = §(Zo) (unique-
ness follows from the monotonicity of h and g). In conclusion, f has precisely one
critical point, lying in (e, e?).

10. In virtue of the duplication formulas (2.13),
f'(z) = 2cosz — sin2z = 2cosz(1 — sinz).

Thus f'(z) =0whenz = § and z = 37, f'(z) >0for0 <z < Zordm<az<2m
This says ¢ =  is an absolute maximum point, where f( Z) = 2, while z = %‘.’T
gives an absolute minimum f($) = —35. Additionally, f(0) = f(2x) = 1 so the
boundary of [0, 27| are extrema: more precisely, = 0 is a minimum point and
z = 27 a maximum point.

11. Since f is defined on # > 0 with z # 1, the maximal interval containing
To = % where f is invertible must be a subset of (0,1). On the latter, we study the
monotonicity, or equivalently the invertibility, of f which is, remember, continuous
everywhere on the domain. Since

1 log’z+1
zlog?z  zlog’z ’

(=) = % +

it is immediate to see f’(z) > 0 for any z € (0,1), meaning f is strictly increasing
on (0,1). Therefore the largest interval of invertibility is indeed (0,1)
To write the inverse explicitly, put ¢ = log z so that

y+/y?+4

1
y=t-7, —ty—1=0, ¢t= 5 )

and changing variable back to z,
= eyi— gu2+d d
Being interested in = € (0,1) only, we have

5= f(y) ="

or, in the more customary notation,

1

Eventually f~1(0) =e™, so

(f71)'(0)
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12. The function f(z) = log(1 + z) — = is defined on z > —1, and

L Sp=ee, B K= S (2] =
As 1
4 _ 1 HH
f(x)ﬁ1+:c 1+z’

z = 0 is critical, plus f'(z) > 0 on ¢ < 0 and f'(z) < 0 for z > 0. Thus
f increases on (—1,0] and decreases on [0,+00); ¢ = 0 is the point where the
absolute maximum f(0) = 0 is reached. In conclusion f(z) < f(0) = 0, for all
o=,

13. One checks f is odd, plus
f'(z) = 152" — 1502 + 135 = 15(z* — 1022 + 9)
=15(z® —1)(2®> — 9) = 15(z + 1)(z — 1)(z + 3)(z — 3).

The sign of f’ is summarised in the diagram:
+ = - = +

.’.32—1 _____

a1 _g e T S A ] e e et

What this tells is that f is increasing on (—o0,—3], [-1,1] and [3,+0cc), while
decreasing on [—3, —1] and [1, 3]. The points = —1, = 3 are relative minima,
z =1 and z = —3 relative maxima:

—216

Figure 6.17. The function f(z) = 3z° — 50z® + 135z
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F1)=—f(-1)=88 and  f(3) = —f(—3) = —216.

Besides,
lim f(z) = —o0, lim f(z) = +o0.

T——00 T—++00
The graph of f is in Fig.6.17.
The second problem posed is equivalent to studying the number of solutions of

f(z) = —k as k varies: this is the number of intersections between the graph of f
and the line y = —k. Indeed,

if k> 216 or k< —216 one solution

if k=216 two solutions
if k € (—216,—88)U (88, 216) three solutions
if k=488 four solutions
if k € (—88, 88) five solutions.

This gives the maximum (5) and minimum (1) number of roots of the polynomial
3z° — 50a® 4 135z + k-

14. Study of the function f(z) = z* — 2\/log z:

a) Necessarily z >0 and logz > 0, i.e, & 2 1, so dom f = [1,400).
b) From

f(z) = 4z*\/logz — 1
z+/log z

we have
1
flz)=0 <= da*Vlgz=1 <= qz)=logz= Tl g2() -

On z > 1 there is an intersection zo between the graphs of g1, g2 (Fig. 6.18).
Hence f'(z) > 0 for & > o, f is decreasing on [1, o], increasing on [z, +00).

ga2(x) / g91(z)

/:co

Figure 6.18. Graphs of g1 () = logz and ga(z) = #
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This makes o a minimum point, and monotonicity gives f invertible on [1, zo)
and [zp, 4-00). In addition, g,(1) =logl =0 < 75 = 92(1) and ¢1(2) = log2 >
stz = 92(2), which implies 1 < 2y < 2.
c) As f(e) = e* — 2, the point (e* — 2, e) belongs to the graph of f~! and
1 e
i (5 QR o S
(f ) (e ) f’(e) 4.64 = 1

15. Study of f(z) = Aﬁ?:

a) The domain is determined by z2—3 > 0 together with z # —1, hence dom f =
(=00, =v/3] U [V/3,400). At the boundary points:

lm fo) = i VT G
3—11}:105 5‘3) - x—:-u:{loo _7;(1 + %) - :r—)uﬂl:loc z i
lim f(z) = lim+ flz) =0,

T——/3" z—/3

so y = 1 is the horizontal right asymptote, y = —1 the horizontal left asymp-
tote.

b) The derivative
T+3

fi=) = (z+1)2y/22 -3

vanishes at ¢ = —3 and is positive for z € (=3, —v/3) U (v/3,+00). Thus f
is increasing on [-3,—+/3] and [v/3, +00), decreasing on (—oo, =3z =-3

is an absolute minimum with f(—3) = ~-‘*§/E < —1. Furthermore, the points
T = ++/3 are extrema too, namely z = —/3 is a relative maximum, z = /3

a relative minimum: f (:I:\/g) =0.
c) Fig.6.19 (left) shows the graph of f.

_-3. _.\/§ —3+\/I§
. V3 E

Figure 6.19. Graphs of f (left) and g (right) of Exercise 15




d)

16.
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Right-translating the negative branch of f by /3 gives g(z) for = < 0, whereas
shifting to the left the branch on & > 0 gives the positive part of g. The final
result is shown in Fig. 6.19 (right).

The map g is continuous on R, in particular

Jim g(@) = lim f(z—V8)=f(-v8)=0=f(V8)= lim g(z).

Since
lim ¢'(z)= lim f'(z)= lim f'(z)=4o0

z—0% z—v/3" z——3"
g is not differentiable at z = 0.
Study of f(z) = 1/|z? — 4| — z:
The domain is R and
Spsg=ln e =t lim fgi=de

Thus y = 0 is a horizontal right asymptote. Let us search for oblique asymp-
totic directions. As

B A% o i (-1/1—%—1)=-2,
T—=—00 I T—r—00 T

| o (Ve _
i ) ol = o N —Lon] = e e

2 42
© 44—z 0,

the line y = —2z is an oblique left asymptote.

It suffices to solve y/|z2 — 4| —z > 0. First, /|22 — 4| > = for any z < 0. When
z > 0, we distinguish two cases: 22 —4 < 0 (so 0 < z < 2) and 22 —4 > 0 (i.e.,
z22).

On 0 £ z < 2, squaring gives

4h$22x2 = 9:2—250 = 0_<_x§\/§.
For z > 2, squaring implies 22 — 4 > z?, which holds nowhere. The function

then vanishes only at z = /2, is positive on £ < /2 and strictly negative for
z > /2.

Since
(@) Vi—2z?—2 f-2<z<2,
T) =
Vzt—4—z fz<-2,2>2,
we have -
A
— m2
Pleymq YAZ®

-1 ifze<-2,2>2.

Va2 —4



216 6 Differential calculus

\

S

Figure 6.20. The function f(z) = /|22 — 4| — 2z

When -2 <z <2, fl(z) >0if o+ V4 — 22 <0, that is V4 — 22 < —z. The
inequality does not hold for £ > 0; on —2 < z < 0 we square, so that

4-—z% < z? — z2-2>0 — —2<g<—V/2.

Hence f/(z) = 0 for z = —/2, f'(z) > 0 for =2 < z < —v/2 and f'(z) < 0
when —v2 < z < 2.
frx<-20rz>2 fl(z) >0if z— 2% —4 >0, ie., vVz? — 4 < 2. The latter
is never true for ¢ < —2; for z > 2, 22 > z% — 4 is a always true. Therefore
fl(z) >0perz>2e f'(z) <0 perz<—2.
Summary: f decreases on (—oo, —2] and [—/2, 2], increases on [—2, —/2] and
[2,4+0c). The points z = +2 are relative minima, £ = —/2 a relative max-
imum. The corresponding values are f(—2) = 2, f(2) = =2, f(—v2) = 2V/2,
so ¢ = 2 is actually a global minimum.

d) As composite of continuous elementary maps, f is continuous on its domain.
To study differentiability it is enough to examine f’ for  — +2. Because

. ! oz
.7:1—1322'}0 (m) =9

at z = £2 there is no differentiability.
e) The graph is shown in Fig. 6.20.
17. Study of f(z) = V/e?* —1:

a) The function is defined everywhere

lim f(z) =+o0 and lim f(z)=-1.

r—rto0 -0

b) The first derivative
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I

Figure 6.21. The map f(z) = ¥/e%= — 1

is positive for 2 € R\ {0}, and f is not differentiable at z = 0, for hm f’( )=
+00. Therefore f increases everywhere on R.
¢) The second derivative (for z # 0)

2z
" _ X ox €7 — 3
f(@) = 9 (e2= 1)5/3

vanishes at z = 3 log 3; it is positive when z € (=00, 0) U (3 log 3, +00). This
makes z = 1 logS an ascendmg inflection, plus f convex on (—ov, 0] and
[2log3, +oo) concave on [0, ;log3]. Suitably extending the definition, the
point £ = 0 may be acknowledged as an inflection (with vertical tangent).

d) See Fig.6.21.
18. Study of f(z) =1 —e~lel 4 2;
a) Clearly dom f = R. As

lim e~ l*l =0,
£—++oo

we immediately obtain

e, f(8) = £o0,

==l
tim £ _ (5~ +l)=li
Tz—toc I z—too \ T e e
4 _E — e
A2, (70 =3) = Jim (-7 =1

This makes y = %x + 1 a complete oblique asymptote.
b) The map is continuous on R, and certainly differentiable for z # 0. As
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ifz>0,

ifz<0,

it follows

1 1
I d = lim [—eT+=]|==—
x—iug— f (w) ml—lr-l]— ( e 6) e :

1 1
li ' — 1 —# g =) ==
:’é z—l'%l"'f (LB) ::llrrg*' (e + e) e +1

preventing differentiability at z = 0.
Moreover, for z > 0 we have f'(z) > 0. On z < 0, f'(z) > 0 if e* < %

i.e., z < —1. The map is increasing on (—oo, —1] and [0, +oc), decreasing on
-1, 0].

¢) The previous considerations imply ¢ = —1 is a local maximum with f(—1) =
1 -2, z=0 alocal minimum where f(0) = 0.

d) See Fig. 6.22.
19. Study of f(z) = e®(z® — 8|z — 3| — 8):
a) The domain covers R. Since
e“(z? +8z—32) ifz<3,
fay=4° " |
e®(z* —8z+16) ifz >3,

we have 5
e’(z®°+ 10z —24) ifz<3,
ro-

e*(z® — 6z + 8) if &> 3.
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Onz < 3: f'(z) =0if 22 +10z—24 — 0,80z = —12 or z = 2, while f'(z) >0
if 2 € (—00,~12)U(2,3). Onz > 3: f'(z) = 0 if 22 — 6z +8=0,ie,z=4
(z = 2 is a root, but lying outside the interval z > 3 we are considering), while
f'(@) > 0if z € (4,400).

Therefore f is increasing on the intervals (—00,-12], [2,3] and [4,4+00), de-
creasing on [—12,2] and [3,4].

From part a) we know z = —12 and z = 3 are relative maxima, z = 2 and z = 4
relative minima: f(~12) = 16e~12, £(2) = —12¢?, f(3) =e? and f(4) = 0. For
the range, let us determine

lim f(z)= Jlim e"(z® +8z-32) =0,

T——c0
. _ - T b — —
zLu_'r_zm )= xBTWe (z° — 8z + 16) = +o0.

Continuity implies

im f = [min f(z), sup f(z)) = [£(2), +00) = [—12¢?, +00).

¢) No discontinuities are present, for the map is the composite of continuous

functions. As for the differentiability, the only unclear point is ¢ = 3. But
lim f(z) = lim ¢*(2®+ 10z — 24) = 15¢3,
T—3— =43
l' ! = l' T 2 - 6 P 3,
xil‘;l+f($) Jim e (z z + 8) e

sof is not differentiable at z = 3.

d) See Fig. 6.23; a neighbourhood of z — —12 is magnified.

1N

34

-12

21074

14 —-12 \m
2
2 T4 =12

Figure 6.23. Graph of f(z) = *(z? — 8|z — 3| —8)
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e) The function g is continuous on the real axis and

@) e* (2 + 10z - 24) + a ifz < 3,
g (z)=
e*(z* - 6z+8) —a ifz>3.

In order for g to be differentiable at z = 3, we must have

].im g"(m.) _ 1533 + o= lim g}'(:c} = —83 —a;
om0 T—3+

the value o = —8e® makes g of class C! on the whole real line.

20. Study of f(z) = %J_:T’;;‘i:
a) dom f =R\ {~1}. By (5.6) c)

Jm_fle) =0*
while -
w B I ) = = o
From this, z = —1 is a vertical asymptote, and y = 0 is a complete oblique
asymptote.

b) The derivative
iy L—2log|z +1|
fa= (z+1)3

tells that f(z) is differentiable on the domain; f’ (z) = 0if [t + 1| = /e, hence

forz = —1+./e; f'(z) > 0if z € (~o0, —/e—1)U(~1, ve—1). All this says f

increases on (—o0, —/e—1] and (-1, —1+ /e, decreases on [—\/e—1,—1) and

[~1++/e,+00), has (absolute) maxima at = —1 /&, with f(=1£6) = £.
c) From

wyn _ —0+6loglz+1|
f («T) - ($+1)4

the second derivative is defined at each point of dom f,and vanishes at [z+1| =
e%/6, 50z = —14¢%/6. Since f"(z) > 0onz € (o0, —1—e/8)u(e’6 -1, +00),
f is convex on (—co, —1 — €%/%] and [e5/¢ — 1, +00), while is concave on [-1-
e%/6,—1) and (—1, ¢5/6 — 1]. The points z = —1 + /5 are inflections.

21. Study of f(z) = %&Jﬁ‘r’

a) The domain is clear: dom f = R\ {0}. Since lir%f(x) =0 (z ‘wins’ against the
T—

logarithm) we can extend f to R with continuity, by defining g(0) = 0. The
function is odd, so we shall restrict the study to z > 0.
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Figure 6.24. Graph of f(z) = I%le_'?;;jl

As far as the differentiability is concerned, when z > 0

log® z —log?z + logz + 1
f'(z) = g g g -

(1 + log® z)2
with ¢ = logz, the limit reads
2 —t2+t+1 i
. ! _ . o ¥ U WE e . -
Imfe) =t —arer iy ="

Therefore the map g, prolongation of f, is not only continuous but also differ-
entiable, due to Theorem 6.15, on the entire R. In particular g'(0) = 0.

Part a) is also telling that & = 0 is stationary for g. To find other critical
points, we look at the zeroes of the map h(t) = t* —t? +t+ 1, where t = logz
(z > 0). Since

lim h(t) = —oo, lim h(t) = +o0,
t——o0 t—oo0
h(0)=1, H@t)=342-2t+1>0, VLR,

h is always increasing and has one negative zero ty. Its graph is represented in
Fig. 6.25 (left).
As tg = logzp < 0, 0 < zp = e® < 1. But the function is odd, so g has two
more stationary points, £g and —xzp respectively.
By the previous part ¢'(z) > 0 on (zo,+o0) and g¢'(z) < 0 on (0, o). To
summarise then, g (odd) is increasing on (—o0, —zp] and [zg, +00), decreasing
on [—zg, zo|. Because

lim g(z) =400

=00
and ;
9(=) lim Lﬂ; = lim ——==
z—+oe I z—+oo ] 4 log T t—+4oc 1+ £2
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22.

b)

to

= N

Figure 6.25. The functions h (left) and g (right) of Exercise 21

there are no asymptotes.
For the graph see Fig.6.25 (right).

Study of f(z) = arctan fzl 8,

=3

dom f = R\ {3}. The function is more explicitly given by
arcten —2+3 _ arctan(—1) = “I iz <o,
z—3 4
fla) = o
arctan if z > 0,
whence
i = Tm — e i - g O
zHIElcc (=)= xgrrlzloc 4 4’ :rl];r-{-loo #iz) =amctanl 4’
lim f(z) = arctan L arctan(—oo0) = vi,
r—3- 0- 2
lim f(z) = arct - =2
Jm, f(z) = arctan oF = arctan(+o0) = 7
Then the straight lines y = —% , y = Z are horizontal asymptotes (left and
right respectively).
The map
0 itansel;
fl(=) = :
—m ife>0, z#£3

is negative on z > 0, z # 3, so f is strictly decreasing on [0,3) and (3, +o0),
but only non-increasing on (—oc, 3). The reader should take care that f is
not strictly decreasing on the whole [0, 3) U (3,+0cc) (recall the remarks of
p- 197). The interval (—o0, 0) consists of points of relative non-strict maxima
and minima, for f(z) = —%, whereas z = 0 is a relative maximum.
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el

|
8]

Figure 6.26. The function f(z) = arctan lz]j—;
Eventually, inf f(z) = —%, sup f(z) = 5 (the map admits no maximum, nor
minimum).
Our map is certainly differentiable on R\ {0,3}. At & =3, f is not defined; at

z =0, f is continuous but
i Pt T Plaios Jin st
20— z—0+ T a0t 249 3
showing that differentiability does not extend beyond R\ {0, 3}.

Computing
0 ifz<0,

(=) = 6z
(= +9)
reveals that f”(z) > 0 for ¢ > 0 with z # 3, so f is convex on [0,3) and
(3,4+00).
See Fig. 6.26.

ifz>0, T#3,

. Study of f(z) = arcsin /2e® — e®:

We have to impose 2¢% —e?* > 0 and —1 < v/2e* —e?® < 1 for the domain; the
first constraint is equivalent to 2—e® > 0, hence z < log 2. Having assumed that
square roots are always positive, the second inequality reduces to 2e*—e?® < 1.
With y = €%, we can write y2 — 2y + 1= (y — 1)? > 0, which is always true.
Thus dom f = (—o0, log2]. Moreover,

lim_f(z)=0,  f(log2) =0,

and y = 0 is a horizontal left asymptote.



