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b) From
e Ea=E) e
VeE(2 —e®)(1 — 2e% +e2%)  /e%(2 —e7)(1 —e?)?
x
e if0<z<log2,
NeZomrs
. Eaen,
e%(2 — e%)
we see that
2 1 o : ' N 1i 4 =1
z—ﬁ%}gg?)' f (3) sl ::liﬂ')l‘f' f (I) 1‘ Ei"%l_ f (m)

In this way f is not differentiable at = = log2, where the tangent is vertical,
and at the corner point ¢ = 0.

¢) The sign of f’is positive for z < 0 and negative for 0 < z < log 2, meaning that
z = 0 is a global maximum point, f(0) = §, while at z = log2 the absolute
minimum f(log2) = 0 is reached; f is monotone on (—oc, 0] (increasing) and
[0, log 2] (decreasing).

d) See Fig.6.27.

e) A possible choice to extend f with continuity is

_ flz) ifz<log2,
= {0 if z > log 2.

log 2

Figure 6.27. The map f(x) = arcsin v/2e” — e
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Taylor expansions and applications

The Taylor expansion of a function around a real point g is the representation of
the map as sum of a polynomial of a certain degree and an infinitesimal function of
order bigger than the degree. It provides an extremely effective tool both from the
qualitative and the quantitative point of view. In a small enough neighbourhood of
Zo one can approximate the function, however complicated, using the polynomial;
the qualitative features of the latter are immediate, and polynomials are easy to
handle. The expansions of the main elementary functions can be aptly combined

to produce more involved expressions, in a way not dissimilar to the algebra of
polynomials.

7.1 Taylor formulas

We wish to tackle the problem of approximating a function f, around a given point
zp € R, by polynomials of increasingly higher degree.

We begin by assuming f be continuous at zg. Introducing the constant poly-
nomial (degree zero)

T fo,z0(z) = f(=0), Vz € R,

formula (5.4) prompts us to write

(@) =T fo,ze(z) + 0(1), z— 0. (7.1)

Put in different terms, we may approximate f around zg using a zero-degree-
polynomial, in such a way that the difference f(z) — T'fo4,(z) (called error of
approximation, or remainder), is infinitesimal at o (Fig. 7.1). The above relation
is the first instance of a Taylor formula.

Suppose now f is not only continuous but also differentiable at zo: then the

first formula of the finite increment (6.11) holds. By defining the polynomial in z
of degree one
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y = f(z)
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Figure 7.1. Local approximation of f by the polynomial T fo = T fo,,

T f1,20(2) = f(z0) + f'(z0)(z — z0),
whose graph is the tangent line to f at zp (Fig. 7.2), relation (6.11) reads

f(z) = Tfix6(z) +0(z — 20), = — 20. (7.2)

This is another Taylor formula: it says that a differentiable map at zy can be
locally approximated by a linear function, with an error of approximation that
not only tends to 0 as © — zg, but is infinitesimal of order bigger than one.

In case f is differentiable in a neighbourhood of g, except perhaps at zg, the
second formula of the finite increment (6.13) is available: putting z; = zg, T2 =z
we write the latter as

f(@) = T fozo(x) + F'(Z)(z — 20), (7.3)

y = f(z)

y=Tfi(z)
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Figure 7.2. Local approximation of f by the polynomial T'f1 = T f1,z,
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where % denotes a suitable point between o and z. Compare this with (7.1): now
we have a more accurate expression for the remainder. This allows to appraise
numerically the accuracy of the approximation, once the increment x — o and an
estimate of f' around g are known. Formula (7.3) is of Taylor type as well, and
the remainder is called Lagrange’s remainder. In (7.1), (7.2) we call it Peano’s
remainder, instead.

Now that we have approximated f with polynomials of degrees 0 or 1, as
z — zp, and made errors o(1) = o[(o; - xo)o) or o(z — o) respectively, the natural
question is whether it is possible to approximate the function by a quadratic

polynomial, with an error o((:t: - zo)z) as T — zp. Equivalently, we seek for a real
number @ such that

F(@) = f(zo) + f(zo)(z — o) + a(z — 70)* + o((z — z0)%), z—oao. (74)

This means

1o (@) = £(@0) = F'(@o)(z —20) —al@ =0 _,
T (I — xo)2 -

By de 'Hépital’s Theorem, such limit holds if
! ! — -
fm L@} = f (z0) — 2a(z — Z0)

T—Tg 2(:‘-‘3 = :Bo) =i
ie,
7 =
lim (EM _a) =0,
z—ao \ 2 T — To
or

1, @) fla) _,

2 z—zp T — To
We conclude that (7.4) is valid when the right-hand-side limit exists and is finite: in
other words, when f is twice differentiable at zp. If so, the coefficient a is 3 f"(zo)-
In this way we have obtained the Taylor formula (with Peano’s remainder)

f(@) = T fazo(@) + 0((& — 20)*), & — o, (7.5)

where g
T f,00(2) = f(@0) + f'(@0) (@ — 20) + 51" (20)(@ — 20)”
is the Taylor polynomial of f at zo with degree 2 (Fig. 7.3).

The recipe just described can be iterated, and leads to polynomial approxim-
ations of increasing order. The final result is the content of the next theorem.
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This remainder is said Lagrange’s remainder of order n, and (7.8) is the Taylor
expansion of f at zp of order n with Lagrange’s remainder.

Theorems 7.1 and 7.2 are proven in Appendix A.4.4, p. 456.

An additional form of the remainder of order n in a Taylor formula, called
integral remainder, will be provided in Theorem 9.44.

A Taylor expansion centred at the origin (zo = 0) is sometimes called Mac-
laurin expansion. A useful relation to simplify the computation of a Maclaurin
expansion goes as follows.

Property 7.3 The Maclaurin polynomial of an even (respectively, odd) map
involves only even (odd) powers of the independent variable.

Proof. If f is even and n times differentiable around the origin, the claim follows
from (7.7) with 2o = 0, provided we show all derivatives of odd order
vanish at the origin.

Recalling Property 6.12, f even implies f’ odd, f” even, " odd et cetera.
In general, even-order derivatives f(2*) are even functions, whereas F2k+1)
are odd. But an odd map g must necessarily vanish at the origin (if defined
there), because z = 0 in g(—z) = —g(z) gives g(0) = —g(0), whence
g(0) =0.

The argument is the same for f odd.

7.2 Expanding the elementary functions

The general results permit to expand simple elementary functions. Other functions
will be discussed in Sect. 7.3.

The exponential function
Let f(z) = e®. Since all derivatives are identical with e®, we have f®)(0) =1 for
any k > 0. Maclaurin’s expansion of order n with Peano’s remainder is

z? z" zh =\ zF
eC=1l+2+—4...+—+...+—+o0(z") =) —+o(z"). (7.9)
2 K ! 25
Using Lagrange’s remainder, we have
- e’ +1
e i n T
e = g o —+ T 1)!:1: ; for a certain Z between 0 and z. | (7.10)

Maclaurin’s polynomials for e* of order n = 1,2,3,4 are shown in Fig. 7.4.
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y = f(z)
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/' y =T fa(x)
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Figure 7.3. Local approximation of f by T'f2 = T fa 2,

Theorem 7.1 (Taylor formula with Peano’s remainder) Let n > 0 and
[ ben times differentiable at zy. Then the Taylor formula holds

f(@) = T fnzo(2) + o((x — 20)"), = — 0, (7.6)

where

=1
T fozo(z) = ;0 i/ (@o)(@ — zo)" (7.7)

= f(zo) + f'(zo)(z — 20) +... + %f(“)(zo)(x — )"

The term T fy, 4:o(z) is the Taylor polynomial of f at z, of order (or degree)
n, while o((z — zo)") as in (7.6) is Peano’s remainder of order n. The rep-
resentation of f given by (7.6) is called Taylor expansion of f at zg of order n,
with remainder in Peano’s form.

Under stronger hypotheses on f we may furnish a preciser formula for the
remainder, thus extending (7.3).

Theorem 7.2 (Taylor formula with Lagrange’s remainder) Let n >0
and f differentiable n times at o, with continuous nth derivative, be given;
suppose f is differentiable n+1 times around zg, except possibly at ©o. Then
the Taylor formula

F(@) =T faz0(z) + FP ) - ) (7.8)

1
(n+1)!

holds, for a suitable T between zo and z.
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Figure 7.4. Local approximation of f(z) =% by T'fp =T fapo forn=1,2,3,4

Remark 7.4 Set z =1 in the previous formula:

e—ékl n+1 (con0 <z <1).

For any n > 0, we obtain an estimate (from below) of the number e, namely

o1
By =Y = (7.11)

k=0
because 1 < e* < e < 3 moreover, the following is an estimate of the error:

e—e, <
(

m+) n+ 1)

In contrast to the sequence {a, = (1+ )"} used to define the constant e, the
sequence {e,} converges at the rate of a factorial, hence very rapidly (compare
Tables 7.1 and 3.1). Formula (7.11) gives therefore an excellent numerical approx-
imation of the number e.

The expansion of f(z) = e® at a generic z follows from the fact that f(*)(zg) = e

(=20l , |, u@—z)
2 n!

= Z 2 (% —%0)" zu + o((z — z0)").

k=0

e” =% +e"(z — ) + ™ + o((z — zo)")
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3

€n

1.0000000000000
2.0000000000000
2.5000000000000
2.6666666666667
2.7083333333333
2.7166666666667
2.7180555555556
2.7182539682540
2.7182787698413
2.7182815255732
2.7182818011464

U=liv R B = IS LI =S L B S R e

—
(==}

Table 7.1. Values of the sequence {e,} of (7.11)

The logarithm
The derivatives of the function f(z) = logx are

Pla)=z=27, =167, (o) = (12,
and in general,
P () = (~1)F (k- 1)1z",
Thus for & > 1,

AON k=11
mo - DT
and the Taylor expansion of order n at zy = 1 is
N —1)n
logz = (z—1) — (@ 21) +...+ [—1)“_1££n—) +o((z - 1))

. (712)
E (-1) k +o(lz =1t
k=1

Let us change the independent variable z — 1 — z, to obtain the Maclaurin ex-
pansion of order n of log(1 + z)

z2 T
log(l+2z)=2z— 5 +...4 (—l)“"l—n— + o(z™)

5 x (7.13)
=3 (- % + o(z™).

1

"The Maclaurin polynomials of order n = 1,2, 3,4 for y = log(1+z) are represented
in Fig. 7.5.
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Jr Tfs o Th

TH | \ Th
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Figure 7.5. Local approximation of f(z) = log(1 + &) by T'fn = T'fno forn =1,2,3,4

The trigonometric functions

The function f(z) = sinz is odd, so by Property 7.3 its Maclaurin expansion con-
tains just odd powers of z. We have f'(z) = cosz, f’”( ) = —cosz and in general
FHD(z) = (—1)* cosz, whence f*+1)(0) = (—1)*. Maclaurin’s expansion up
to order n = 2m + 2 reads

e g2m+1 ;
——— i e B e m-+2
sinz =z T +(=1) Gmi1) +o(z )
. (719
kz “EErD e

The typical structure of the expansion of an odd map should be noticed. Mac-
laurin’s polynomial T fam42,0 of even order 2m + 2 coincides with the polynomial
T fom+1,0 of odd degree 2m + 1, for f®m+2)(0) = 0. Stopping at order 2m + 1
would have rendered

) B m % $2k+1 o
sma:—Z( 1) (2k+1)r+0{$ Yo
k=0

to which (7.14) is preferable, because it contains more information on the re-
mainder’s behaviour when « — 0. Figure 7.6 represents the Maclaurin polynomials
of degree 2m + 1, 0 < m < 6, of the sine.

As far as the even map f(z) = cosz is concerned, only even exponents appear.
From f"(z) = —cosz, f*(z) = cosz and f*)(z) = (—1)*cosz, it follows
F@¥)(0) = (—1)*, so Maclaurin’s expansion of order n = 2m + 1 is
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Tt T
Tfni !'|"!,_ ThH 1 Tfs. i Tfla/TfI

Tfl//Tf;;i IIl IJ Tfs
Tfq

roximation of f(z) = sinz by polynomials T fam+1 = T famt1,0

Figure 7.6. Local app
with0<m <6

2 4 pm

cosz=1-5 4% e (=D —— o)l + o(z®™+1)

2 4l

(7.15)
= Z( )k(zk)l ( 2m+1)_

k=0

The considerations made about the sin
of order 2m (1 < m < 6) for y = cosz

e apply also here. Maclaurin’s polynomials
can be seen in Fig.7.7.

.y
Thq |[T1:
Tfe T fs

Figure 7.7. Local approximation of f(z) = cosz by Tform = T fomo when1<m <6
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Power functions
Consider the family of maps f(z) = (1 + z)* for arbitrary o € R. We have

f'(z) = a(l+z)*!
f(z) = ala—1)(1 +z)*2
f”‘(x) =ala—1)(a—2)(1+ x)"‘_3.
From the general relation f*)(z) = a(a —1)...(a — k+1)(1 +2)** we get

=1, O _el-aktl) g5,

At this point it becomes convenient to extend the notion of binomial coefficient
(1.10), and allow « to be any real number by putting, in analogy to (1.11),

(O‘) e (a) _iofe— 1 -I;I(a B i -

Maclaurin’s expansion to order n is thus

(l+z)*=14azx+ @m2+...+ (z)$“+o($“)

~Z( )x +o(z™).

Let us see in detail what happens for special values of the parameter. When
a=-1

(7.17)

(—21) _EE (—1) _EDEDEY

50

H—Lx SRS R i e e g(—l)%k +o@@™). | (7.18)

Choosing a = § gives

(2) I I (3) _33-1G-2) L

and the expansion of f(z) = /1 +  arrested to the third order is
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Y

0

Figure 7.8. Local approximation of f(z) = 1+ by Tfn = Tfne for n=1,2,3,4

1 1
Vitz=1+52- %32+Ex3 + o(z*).

The polynomials of order n = 1,2, 3,4 are shown in Fig.7.8.

For conveniency, the following table collects the expansions with Peano’s re-
mainder obtained so far. A more comprehensive list is found on p. 476.

- wz :Bk "
e =1+$+3+...+E+...+E+o(m“)
2 n
log(1+2) =2 — % - (—1)“—1% +o(z™)
$:"!. 275 $2m+1
i e i G G Sy e 2m+2
snper-ar b Uy ol )
$_2 ,_“,.4 m.2m
=1 - — G FE It 2m+1
cosz =1 T +{~1) {2m)!+o(:c )
-1
(1+m)“=1+am+&a2——)x2+...+(3):c“+o(:c“’)
1 2 .7 n
1_}_:|".=1—:r,'+:c: — oot (=1)"2™ + o(z™)
1 1
\/1+$=1+§m—%$2+fﬁ—$3+0(z3)
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7.3 Operations on Taylor expansions

Consider the situation where a map f has a complicated analytic expression, that
involves several elementary functions; it might not be that simple to find its Taylor
expansion using the definition, because computing derivatives at a point up to a
certain order n is no straighforward task. But with the expansions of the element-
ary functions at our avail, a more convenient strategy may be to start from these
and combine them suitably to arrive at f. The techniques are explained in this
section.
This approach is indeed justified by the following result.

Proposition 7.5 Let f : (a,b) — R be n times differentiable at zo € (a,b).
If there exists a polynomial P,, of degree < n, such that

f(z) = Pa(z) + o((z — z0)™) for z — x, (7.19)

then P, is the Taylor polynomial T, = T fn.zo of order n for the map f at zg.

Proof. Formula (7.19) is equivalent to
P, (z) = f(z) + o(z), with (z) = of(z — z0)") for £ — =zo.
On the other hand, Taylor’s formula for f at zg reads
Tn(z) = f(z) + v(z),  with u(z) = o((z —zo)").
Therefore
Pa(z) — Ta(2) = () — 1(z) = o((z — 20)"). (7.20)

But the difference Py(z) — T (z) is a polynomial of degree lesser or equal
than n, hence it may be written as

Pﬂ(m) = Tn(x) = i Ck(s.-" — xo)k.

Eod
[=]

The elann is thar sll coellicients ¢ vanish. Suppose, by contradiction, there
are some non-zero cg, and let m be the smallest index between 0 and n
such that ¢, = 0. Then

Pp(z) — Tu(z) = Z cr(z — fb"o)k

k=m

Pa(@) — Ta(a)

1) et 3 anla—zo ™

k=m-+1
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by factoring out (z — z¢)™. Taking the limit for £ — zy and recalling
(7.20), we obtain

0= Cm,
in contrast with the assumption. |

The proposition guarantees that however we arrive at an expression like (7.19)
(in a mathematically correct way), this must be exactly the Taylor expansion of

order n for f at zg.
Example 7.6
Suppose the function f(z) satisfies

fl)=2-3(z—2)+(z—2)* - 2(9:—2)3 +o((zx—2)%) forz—2.
Then (7.7) implies

B R f"(2) @) 1
f2)=2, f'(2)=-3, —2——1, = Eop
hence

f@)=2 f@=-3, f@=2 f"0)=-s. 5

For simplicity we shall assume henceforth 2o = 0. This is always possible by a
change of the variables, z — t = = — =o.

Let now

f(z) = a0+ a1z + ... + anz™ + o(z") = pn(z) + o(z™)
and

9(x) = bo + b1z + ... + bpz™ + o(z™) = gn(z) + 0o(z™)
be the Maclaurin expansions of the maps f and g.

Sums
From (5.5) a), it follows

f(z) £ g(z) = [pa(2) + 0(z")] + [gn () + o(z™)]
= [pn(2) % gn(@)] + [o(z™) + 0(z™)]
= Pa(2) £ ga(2) + ofz").

The expansion of a sum is the sum of the expansions involved.

Example 7.7

Let us find the expansions at the origin of the hyperbolic sine and cosine, intro-
duced in Sect. 6.10.1. Changing = to —z in

.‘.1‘:2 $2n+2

zzl 1502l 2n-2
e to+ o+ +—(2n+2)!+o(m )
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gives
2 I2n+2
—'221_ iR g 21’1-‘-2‘
© S e e
Thus
sinhz = 2(e" —¢~%) =z + R TN it o(z™+?)
2 TR T s T 2n+1)! :
Similarly,
1 2 il 22
he = = (e Y — e e I o et 2n+1y
coshy = p(e* +e ") =1+ =+ 4.+ i T o)
The analogies of these expansions to sinz and cosz should not go amiss. O

Note that when the expansions of f and g have the same monomial terms up to
the exponent n, these all cancel out in the difference f —g. In order to find the first
non-zero coefficient in the expansion of f — g one has to look at an expansions of f
and g of order n’ > n. In general it is not possible to predict what the minimum =’
will be, so one must proceed case by case. Using expansions ‘longer’ than necessary
entails superfluous computations, but is no mistake, in principle. On the contrary,
terminating an expansion ‘too soon’ leads to meaningless results or, in the worst
scenario, to a wrong conclusion.

Example 7.8
Determine the order at 0 of
h(z) =e* — V1+2z
by means of Maclaurin’s expansion (see Sect. 7.4 in this respect).
Using first order expansions,

flz)=¢" =142+ o(x),
g9(z) =V1+2z =142z +o(z),
leads to the cancellation phenomenon just described. We may only say
h(z) = o(),
which is clearly not enough for the order of h. Instead, if we expand to second
order

2
flz) =e® =1+x+%+o(m2)

2
gz)=vV1+2z=1+2— % + o(z?),
then
h(z) = z* + o(z?)

shows h(z) is infinitesimal of order two at the origin.

Products
Using (5.5) d) and then (5.5) a) shows that
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f(2)g(z) = [pn(z) + o(z™)][gn () + o(=™)]

= Pn(2)qn(2) + Pn(2)o(z") + gn(z)o(z") + o(z™)o(z")

= pn(2)gn(2) + 0(z") + o(z™) + o(z*")
= Pn(2)gn(2) + o(2").

The product p,(z)gn(z) contains powers of = larger than n; each of them is an

o(z™), so we can eschew calculating it explicitly. We shall write

Pn(2)gn(z) = ro(z) + o(2™),

intending that r,(z) gathers all powers of order < n, and nothing else, so in

conclusion
f(z)g(z) = rn(z) + o(z™).

Example 7.9

Expand to second order
hz) =v1+ze®
at the origin. Since
2
flz)=vVi+z=1+ 2 m—-+~¢'J(x2),

2 8
2

9(@) = ¢" =1+ + % +o(a?),
it follows

h(z) = (1+§—5§) (1+:c+§2i) +o(z?)

(1ra+ D)+ (24242 il o Y
= g 272 |1 g |8

) + o(z?)

—1+2w+8$ + o(z*).

explicitly, although no harm was done.

Quotients
Suppose g(0) 5 0 and let @)
flz
h(z) = ——=
(z) 9(z)’

for which we search an expansion

n

h(z) =rn(z) +o(z™),  withra(z) = cpa*.

k=0

The boxed terms have order larger than two, and therefore are already accounted
for by the symbol o(z2). Because of this, they need not have been computed

Li
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From h(z)g(z) = f(z) we have

Tn(Z)gn () + 0(z™) = pn(z) + o(z™).

This means that the part of degree < n in the polynomial r,(z)gs (z) (degree 2n)
must coincide with p,(z). By this observation we can determine the coefficients cj
of 7, (z) starting from ¢. The practical computation may be carried out like the
division algorithm for polynomials, so long as the latter are ordered with respect
to the increasing powers of z:

ag + @12 + agz? + ... + axz" + 0(z") | b + b1T + baz? + ... 4 bpz™ + o(z™)

ag + a1z + ayz® + ... + apz™ + 0(z") | co + €12 + ... + CaZ™ + 0(z?)

0+ a1z + @22® + ... + @pz™ + o(z™)

a1z + aha® + ... + aLz" + o(z™)

0 + o(zm)

Examples 7.10

el
—. B
3+ 2log(l + z) ¥
(7.9), (7. 13) we have e =1+ + 122 + o(z?), and 3+ 2log(1 +z) = 3+ 2z —
z? + o(z?); dividing

i) Let us compute the second order expansion of h(z) =

142+ 322 +o( 3+ 2z — z? 4 o(2?)

3+ 53+ Ha2? + o(z?)

produces h(z) = 3 + = + a2 + o(z?).
ii) Expand h(z) = tanz to the fourth order. The function being odd, it suffices
to find Maclaurin’s polynomial of degree three, which is the same as the one of

order four. Since
2

3
T
sin:c=:c—%+o{z3) and cosx=l—?+o(x3),

dividing
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Examples 7.11

i) Calculate to order two the expansion at 0 of

hiz) = ¥'o-1,
Define
2
f@)=vVitoz—1= ;i— % +o(z?),
2
9(y) =e¥ = 1+y+%+0(y2)-
Then
h{z) =1+ I +o(z?) -i-1 2 - :8—2 + o(z?) 2+o(x2)

= 2 8 2\2 8

=14+ (2- 3;_2 +o(z?) -l-l :,3_2 + o(z?) | + o(z?)

- 2 8 2\ 4

=1+ g + o(2?).
ii) Expand to order three in 0 the map

h(z) = :

1+log(l+z)
We can view this map as a quotient, but also as the composition of
2 3

f@) =log(l+2) =z — =+ % +o(z?)

with
1

g{y)=m=l—y+y2~y"”+0(y3)-
It follows

22 g3 5 22 g3 5 2
h(z) =1- (m—?+?+o(x ))+ (m—?+—§+o(m ))

2 3 3
—(m—%+%+o(x3)) + o(z?)

=1- (m = %2 + %3 + o(:cS)) + (2® — 2° + 0(2®)) — (¢® + 0(z®)) + o(z?)

3z2 T7z® 3
—l—m+T—T+O(:‘D %

Remark 7.12 If f(z) is infinitesimal of order greater that one at the origin, we
can spare ourselves some computations, in the sense that we might be able to
infer the expansion of h(z) = a(f (z)) of degree n from lower-order expansions of
9(y). For example, let f be infinitesimal of order 2 at the origin (a1 =0, az #0).
Because [f(z)]* = af2®* + o(«?*), an expansion for g(y) of order 2 (if n even) or
241 (n odd) is sufficient to determine h(z) up to degree n. (Note that f(z) should
be expanded to order n, in general.) 0
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Example 7.13
Expand to second order

h(z) = v/cosz = /1 + (cosz — 1).

Set
72
flz) =cosz—1= -5+ o(z?) (2nd order)
giy) =V1+y=1 +%+o(y) (1st order).
Then

h(z) =1+ % (—%2 + o(:c2)) + o(z?)

]

2
=1- % + o(z?) (2nd order).

Asymptotic expansions (not of Taylor type)

In many situations where f(z) is infinite for ¢ — 0 (or z — @) it is possible
to find an ‘asymptotic’ expansion of f(z) in increasing powers of z (z — @), by
allowing negative powers in the expression:

QGem | Q_m4l

a—
fl@) = =0+ 205 + ot a0+ 0z + o+ and” +o(a").

This form helps to understand better how f tends to infinity. In fact, ifea_., # 0,
f will be infinite of order m with respect to the test function z~*.
To a similar expansion one often arrives by means of the Taylor expansion of
1
——, Which is infinitesimal for z — 0.
f(=)

We explain the procedure with an example.

Example 7.14
Let us expand ‘asymptotically’, for z — 0, the function
1
The exponential expansion arrested at order three gives
z? g8
e z+ 5 + 5 + o(z®)
2
- & i 2
—:c<l+2+ 5 + o(z )),
S0
1 1
f(z) == p) .
g o —x—-i-o(a:z)
2 6

The latter ratio can be treated using Maclaurin’s formula

1
e 2 2;
55 y+y* +o(y)
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by putting
2
y=3+% +o()
in fact, we obtain
=1 (1-24Z to@@®)) =114 Z 4o
2 12 z 2 12 ’

the asymptotic expansion of f at the origin. Looking at such expression, we can
deduce for instance that f is infinite of order 1 with respect to ¢(z) = 1, as
z — 0.

Ignoring the term z/12 and writing f(z) = 2 — } + o(1) shows [ is asymptotic
to the hyperbola

g(z) = - c

7.4 Local behaviour of a map via its Taylor expansion

Taylor expansions at a given point are practical tools for studying how a function
locally behaves around that point. We examine in the sequel a few interesting
applications of Taylor expansions.

Order and principal part of infinitesimal functions
Let

f() = ao + a1(z — To) + ... + @n(z — 20)™ + o((z — z0)") -+

be the Taylor expansion of order n at a point zg, and suppose there is an index m
with 1 < m < n such that

=01 = ... =Am-1 =0, but a, #0.

In a sufficiently small neighbourhood of zp,
f(z) = am(z — 20)™ + o((z — zo)™)
will behave like the polynomial
p(z) = am(z — o)™,
which is the principal part of f with respect to the infinitesimal ¥ = = — zp. In
particular, f(z) has order m with respect to that test function.
Example 7.15
Compute the order of the infinitesimal f(z) = sinz — z cosz — 32 with respect
to ¢(z) = z as £ — 0. Expanding sine and cosine with Maclaurin we have
" f(z) = 310m +o(c®), z—0.

Therefore f is infinitesimal of order 5 and has principal part p(z) = —ﬁmﬁ
The same result descends from de I’Hépital’s Theorem, albeit differentiating five
times is certamly more work than using well-known expansions. c
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Local behaviour of a function
The knowledge of the Taylor expansion of f to order two around a point zo,

f(z) = ao + a1(z — o) + az(z — z0)* + o((z — zg)z) ; T — Tp,
allows us to deduce from (7.7) that

f(zo) =ao, fl(o)=a1, f"(z0)=2as.

Suppose f is differentiable twice with continuity around z¢. By Theorem 4.2 the
signs of ag, a1, az (when # 0) coincide with the signs of f(z), f'(z), f"(z), re-
spectively, in a neighbourhood of zp. This fact permits, in particular, to detect
local monotonicity and convexity, because of Theorem 6.27 b2) and Corollary 6.38
b2).

Example 7.6 (continuation)

Return to Example 7.6: we have f(2) > 0, f'(2) < 0 and f”(2) > 0. Around
zo = 2 then, f is strictly positive, strictly decreasing and strictly convex. %

We deal with the cases a; = 0 or a; = 0 below.

Nature of critical points
Let zo be a critical point for f, which is assumed differentiable around zg. By
Corollary 6.28, different signs of f/ at the left and right of &y mean that the point
is an extremum; if the sign stays the same instead, zy is an inflection point with
horizontal tangent.

When f possesses higher derivatives at zp, in alternative to the sign of f’
around zp we can understand what sort of critical point z is by looking at the
first non-zero derivative of f evaluated at the point. In fact,

Theorem 7 16 Let f be dsﬁerentmb!e n. > 2 t-zmes at -’Eu a.nd suppose |
Flao)= .. = f("“‘”( ) = 0, f™@)A0  (ra)

for some 2_< m< n_. '

0 i an ea:tremum name!y a magimum af f (”") (5‘30) < 0

; m)(Iu) Qs e

#) When m s odd o 5 an mﬁectwn point wsth homontai tangent more
precisely the inflection is descendmg zf Fm( :sg) < 0, ascendmg if
f(m)(:to) >0 :
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Proof. Compare f(z) and f(zo) around zo. From (7.6)-(7.7) and the assumption
(7.21), we have

(m) :
£(@) = £(a0) = L2 @ - g 1o (o — o)),

But o((z — z0)™) = (z — zp)™0(1), so

m!

(m) (o
@) = fte0) = (o =gy [ L0 1 )

for a suitable h(z), infinitesimal when z - . Therefore, in a sufficiently
small neighbourhood of zg, the term in square brackets has the same sign
as f(™)(zy), hence the sign of f(z) — f(zo), in that same neighbourhood,
is determined by f(™)(zo) and (z — £o)™. Examining all sign possibilities
proves the claim. ' o

Example 7.17
Assume that around zp = 1 we have
f(@) =2-15(z — 1)* +20(z — 1)° + o((z — 1)®). (7.22)
From this we deduce
FQ=7"0)="1)=0, but f@(1)=-360<0. =
Then 2o is a relative maximum (Fig. 7.9, left).
Suppose now that in a neighbourhood of z1 = —2 we can write

f(z) =3 +10(z +2)° — 35(z + 2)" + o((z +2)7). (7.23)
Then _

F(=2)=f"(-2) = f"(-2) = f9(-2) =0, and f®(-2)=10-5!>0,
telling z; is an ascending inflection with horizontal tangent (Fig. 7.9, right). O

§ = 1(5) y=f(z)

Figure 7.9. The map defined in (7.22), around zo = 1 (right), and the one defined in
(7.23), around zg = —2 (left)

&
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Points of inflection
Consider a twice differentiable f around zo. By Taylor’s formulas we can decide
whether zp is an inflection point for f.

First though, we need to prove Corollary 6.39 stated in Chap. 6, whose proof
we had to postpone to the present section.

Proof. a) Let zo be an inflection point for f. Denoting as usual by y = i(z) =
f(zo) + f'(zo)(z — zo) the tangent line to f at zo, Taylor’s formula (7.6)
(n = 2) gives

£(z) - t(z) = 5" (@0)(z - 20)? +o{(z — 20)"),

which we can write

@) ~ta) = (o ao)? | 31" (o) + h(a)|

for some infinitesimal h at zg. By contradiction, if f”’(zp) = 0, in an arbit-
rarily small neighbourhood of z; the right-hand side Would have constant
sign at the left and right of zp; this cannot be by hypothesis, as f is
assumed to inflect at z.

b) In this case we use Taylor’s formula (7.8) with n = 2. For any z = %o,
around zp there is a point Z, lying between g and =z, such that ,

f(z) ~ ta) = 3f" (@)= - 2o)*

—

Analysing the sign of the right-hand side concludes the proof.

Suppose, from now on, that f”(zg) = 0 and f admits derivatives higher than
the second. Instead of considering the sign of f” around zp, we may study the
point zo by means of the first non-zero derivative of order > 2 evaluated at zp.

Theorem 7 18 Let f be n tzmes dzﬁemmmble (n 23 ) at To, wzth
f”(oco) = .. '..h frm~l>(mg) 0 (m)(mg) ;e 5 (7 24)-_-_

for some. m (3 " m :
' odd, zo s an mﬂecmon pomt descendmg if ffm) (:r,a) & 0,_ .

ﬂ) '.'::'%ehfgmi*;?:'&'-'B’Ea'._&ﬂ,’..$g “not an mﬁectwn for f

Proof. Just like in Theorem 7.16, we obtain
(m)
F(z0) | h(:c)w ;

m!

£(@) - t(z) = (@ — o)™ |
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=Hxz) ¢
A PR

Figure 7.10. Local behaviour of the map (7.25)

where h(z) is a suitable infinitesimal function for z — z,. The claim follows

from a sign argument concerning the right-hand side. o
Example 7.19
Suppose that around zy = 3 we have
f(z) = —2+4(z ~ 3) - 90(z — 3)° + o((z — 3)°). (7.25)
Then f”(3) = f7(3) = f@(@3) = 0 ff5>( ) = =90 - 5! < 0. This implies that
Zp = 3 is a descending inflection for f (Fig.7.10). o

7.5 Exercises

1. Use the definition to write the Taylor polynomial, of order n and centred at

xp, for:

.)"(m)—e, n=4, T =2
b) f(z) =sinz, n="6, o= 7%
H f(z) =logz, =3, =3

d) f(33)=\/2a:+1, n=3, zo=4
f($)=7+2:—3$2+5o:3, n=2, @p=1
f) f(z) =2— 822+ 423 + 924, n=3, 2o =0

2. Determine the Taylor expansion of the indicated functions of the highest-
possible order; the expansion should be centred around z, and have Peano’s
remainder:

f(z) = 2%|z| + &2, zo=0
b) flz)=2+z+(z-1)V22-1, a5=1
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3. With the aid of the elementary functions, write the Maclaurin expansion of
the indicated functions of the given order, with Peano’s remainder:

f(z) = zcos3z — 3sinz, m=2
@f($)=log1+x n=4

143z’
@ f(m):e”gsinZ:c, n=2>a
d) f(z) =e™®°*% Lsing — cosz, n=2
e) f(z) = V/cos(3z — z2), n=4
2 :
m f(x):W—51nx, n=235

@: f(s:):coshzm—\/1+2x2, n=4

2z _
h) f(x)zf/cﬁ, n=4

: _ 1
) )= —+/8sinz — 2cosz |

) f(z) = V8+sin242? — 2(1 + 2% cosz?), n=4

4. Ascertain order and find principal part, for z — 0, with respect to @(z) = z
of the indicated functions:

n=23

a) fz) =e% —¢ @f(:c) _ cos2 tolshgéi_,_ )
B g
@f{m)=£§%£\_@: d) f($)=2$+($2_1)logij..;:

Eﬂf{z) =x—arcta.n————1_i&.§ f) flz)=V1-22- V1= gmg—f-sin%

5. Calculate order and principal part, when = — 400, with respect to o(z) = %

of the indicated functions:

: 1 1

@ fa) =g~ 2(z —2) — log(z — 1)
b) f(z)=e &t —1

lc_—)J f(z) = V14322 + 23 — /24524 + 25

d flz)=1¢ 2+siuh§§ - V2

6. Compute the limits:

s 3qz—37logZ
i . 611/(z? sin? 3z) . COSgmT — pmlog s
[2)] Iz +29) R = S R
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1 1 1 T 1/z*
i Rl T : T I S, iy
‘. :11-133 - (sin(tan &) z) 9) ii—n»%) (e oo == sub :c)
4 4 . h2 2
9 lm~ 18z ] lim 3z*[log(1 + sinh” z)] cosh” =
20 /cos 6z — 1 + 62 z=0 1 —+/1+4 23 cosVz?

As q varies in R, determine the order of the infinitesimal map
h(z) = logcos z + log cosh(az)
asz — 0.
Compute the sixth derivative of

__ sinh(z? +2 sin® )
- 1+ z10

h(z)
evaluated at © = 0.

Let

Determine the sign of y = sin(z) on a left and on a right neighbourhood of
zo = 0. ’
10. 1’ Prove that there exists a neighbourhood of 0 where

o(z) = log(1 + 4z) — sinh 4z + 8z7.

2 cos(z + %) < 2 — z? — 22°.

Compute the limit

- %/ — cosh~/T
20+ (T + ¥/z)°
for all values o € R,
Determine a € R so that

f(z) = (arctan2z)? — azsinz

is infinitesimal of the fourth order as z — 0.

7.5.1 Solutions

1. Taylor’s polynomials:
a) All derivatives of f(z) = e® are identical with the function itself, so f(¥)(2) =
e?, Vk > 0. Therefore
. o2 , e R .
Tfaa(z) =e+e’(z—2)+ 3(5—2) +—6-(:c—2) +£(m-—2) :



7.5 Exercises 251
1
b) Tfa_zzt(:r) =1- *2“(93 o

¢) From f'(z) = é, f'(z)=—=, f"(z) = m% it follows f(3) = log3, f'(3) = %,

7'(3) = *%, 7"(3) = =. Then
Tasln] =Togd + —la=8) = olz= 8P+ —fa—2P
33 3 18 81 '

d) Tfasalz) =3+ %(:c - %@; —42 4 Z;_G(m _ 4,

e) As f'(z) = 1 — 6z + 1522, f”(z) = —6 + 30z, we have f(1) = 10, f'(1) = 10,
f"(1) =24 and

Tfa1(z) =10+ 10(z — 1) + 12(z — 1)2.

Alternatively, we may substitute ¢ = 2 —1, i.e. = 1+¢. The polynomial f(z),
written in the variable ¢, reads

g(t) = fF(1+2) =T+ (1+1t) — 3(1 + )2 +5(1 +t)° = 10 + 10t + 12¢* + 5¢3.

Therefore the Taylor polynomial of f(z) centred at zp = 1 corresponds to the
Maclaurin polynomial of g(t), whence immediately

Tga,0(t) = 10 4 10t 4 124>, .

Returning to the variable z, we find the same result.
f) Tf3,g(a:) =2 — 8z% 4 42°.

2. Taylor’s expansions:

a) We can write f(z) = g(z) + h(z) using g(z) = z*|z| and h(z) = e?*. The sum
h(z) is differentiable on R ad libitum, whereas g(z) is continuous on R but
arbitrarily differentiable only for z # 0. Additionally

'@ = {

322 ifz>0, 6z ifz>0,

9'(z) = {

—3z% ifz<0, —6z ifz <0,
50
Ii ! = 1 3 — i o = B " =0.
A =R EE=h  JLrW = e

By Theorem 6.15 we infer g is differentiable twice at the origin, with vanishing
derivatives. Since g”(z) = 6|z| is not differentiable at = = 0, g is not differen-
tiable three times at 0, which makes f expandable only up to order 2. From
h!(z) = 2e** and A"(z) = 4e**, we have f(0) = 1, f(0) = 2, f”(0) = 4, so
Maclaurin’s formula reads:

f(z) =142z + 222 + o(z?).
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b) The map is differentiable only once at zg = 1, and the expansion is f(z) =
3+ (z—-1)+o(z —1).

3. Maclaurin’s expansions:

a) f(z) = -2z + o(z?).

b) Writing f(z) = log(1+ z) — log(1 + 3z), we can use the expansion of log(1+1¢)
with ¢ =z and ¢t = 3z

2 .3 4 2 3 4
f(m)=:c—%+%——%—3a:+(3z) —(3? +{3z} + o(z*)

= —23 +4z% — _2_??3;3 + 20z* + o(z%).

c) Combining the expansions of e* with ¢ = 22, and of sint with ¢ = 2z:

Flo) = (1 +2? + %4 + 0(9:5)) (2m B + (2a)° + o(ms))

3! 5!
4 4 4
B 3,.6_23 45, 4 5 5
z+2z° +z 3% —3% + ¢ + o(z°)
23 14 :
—2m+§:r: -5 +o(z>).
d) f(z) =22 + o(z?).
e) f(z) =1— 322 4+ 2% — 8Lt 4 o(z4). *
f) This is solved by expanding (1 +¢)* and changing o = — and t = 2%
T 2\—1/6 1o, -3\ 4 4
= 1 = —_—
T z (1+2°) 3(1 52 +(2 z* + o(z*)

— 1 3 7 5 5
=2—=0+oon +o(z°),

from which

3 1s, 75 ls 15 I 5
f(z)—a:—gsc + 752 T+ 5 5% +o(:c)—453: + o(z”)
g) Referring to the expansions of coshz and (1 + )%, with o = & t=0%

2
f(z) = (1 + %xz + ?i—!:?:4 + o(:c“)) — (1 +22%) A

i |
=142+ Z$4 + %x‘* +o(z*) — (1 + %Zmz + (152) (222)% + o(m“))

=142+ %3:4 - 1—x2+%m4+q(m4) = §aa*’*-}-o(:::“).
h) f(z) =2z + 222 + La3 + o(z?).
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i) Substitute to sinz, cosz the respective Maclaurin expansions, to the effect
that 1

—2— 8z + 2%+ gaﬁ +o(m3).

flz) =
Expansion of the reciprocal eventually gives us

1 V2 5, 1T 5o i
f(:t:)——-§+ 5%~ 7% +12\/§x +o(z”).

f) f(z) = —2a* + o(z*).

4. Order of infinitesimal and principal part for z — 0:

a) The order is 2 and p(z) = —2ez? the principal part.

b) Write

cos 2z + log(1 + 4z?) — cosh 2z
cosh 2z

and note that the order for z — 0 can be deduced from the numerator only, for

the denominator converges to 1. The expansions of cost, log(1 + t) and cosh¢

are known, so

h(z) =

L)

cos 2 + log(1 + 4z%) — cosh 2z
SRR . g 2 Loova_q_Llovo 1. 4
=1 5 (2z)° + 1 (2z)* + (22) 2(23) 1 2(2:(:) 1 (2z)* + o(z®)

= —8z% + o(z*).
Thus the order is 4, the principal part p(z) = —8z*.
¢) Expanding sint and €', then putting ¢ = /7, we have

3 _ .3 8 — (t— 143 £))° 145 5
g(t) = ¢ StSln t - (t 6 + o )) _ 2 + o(t°) — 1t4+o(t4)
edt — 1 1+3t+o(t) -1 3t + o(t) 6

for £ — 0. Hence
f(m) == 6""”2 G o(xz):
implying that the order is 2 and p(z) = gz
d) The map has order 3 with principal part p(z) = 32°.

e) Use the expansion of (1 4 t)* (where & = —3) and arctant:

(1 —42%)~Y2 =1 4 222 + o(z?), —-\/% =z +22° + o(z*)
— 4z
1
arctan ———— = z + 22° + o(z?) — =(z — 22° + o(z*))® + o(z®)
V1 — 4z? 3

5
=+ §w3 + o(z®).
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In conclusion,

f(e) = —3a° +o(a?),, -

so that the order is 3 and the principal part p(z) = —§2°. -
f) Order 6 and principal part p(z) = (—3x + 557)75.

5. Order of infinitesimal and principal part as z — +oc:
a) When z — +o0o we write
B z—2—log(z—1)
f(z) = 2(z—2)2— (z—2)log(z — 1)
B z—2—log(z—1)
" 222 -8z +8— (z—2)log(z — 1)

_ &to(z) 1 S 1
T 222 4 0(z?) 2z z )’
from which one caﬁ recognise the order 1 and the principal part p(z) = -

2z’
b) The map is infinitesimal of order one, with principal part p(z) = -=-
c) Write

f(_z)=§/w3 (1+%+;—3)—{/x5 (1+§+%) -

3 1 1/3 5 2 1/5
=z(l+-+5) -z(l+=4+=) .
T T T HH

Using the expansion of (1 +£)* first with «
t=2+ % weget

B if8 . 2 /3, 1\? 1
f(m)—x[1+§(5+5§)—(2)(—-1—3:3) +ol g |+
1(5 2 i

1_3(£+53)_(2 (
=z l+1 i~1—1-|*2+o :
~\z "3 22 z 575 22 z?

ro(e(3)) 22

Therefore the order is 1, and.p(z) =
d) The order is 2 and p(z) = -;g

Il
i
4
Il
8w
+

2, then with o= 1,
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6. Limits:

a) Let us rewrite as

& 61/(z* sin® 3z) = 1i 1 6
il_l‘:.‘b{l + z°) lim exp ($—4 e log(1 4=z ))

z—0
log(1 + :sﬁ)) i

=exp | lim -
(I—>U z4sin’ 3z

To compute L, take the expansions of log(1 + ¢) and sint:

z® +o(z?) 1

[=lim_2¥o@) .

" 220 24(3z + 0(22))2 <0926 +o(zf) 9
The required limit is e'/°.

b) 3.

c¢) Expanding the sine and tangent,

I = g EoSin(tanz) _ & — tanz + £ tan® z + o(z®)
" 20 glsin(tanz) -0 z2(tanz + o(z))
s T B — 323 + 228 + o(z®) _ —52° +o(a®) _ 1
z—0 z3 + o(z8) =0 3 + o(z3) 6
d) e~2/3; e) —1.

f) Observe that
3z*[log(1 + sinh? z)] cosh® z ~ 3z*sinh? z ~ 32°.
for z — 0. Moreover, the denominator can be written as

Den : 1— (1 +2%)"/2cosz®/?

=1- (1 + %x3 - (IQQ) 2%+ o(wﬁ)) (1 - %:7:3 - %mﬁ - o(mﬁ))

1
=1- (1 + %23 - %506 - %:t:3 — %xs — ime - o(xs)) = gme + o(z%).

The limit is thus
. 3z°+o0(z%)
2=0 126 + o(z6)

. Expand log(1 + t), cost, coshi, so that

|

h(z) = log (1 - %:a:2 - %x‘i + o(ms)) + log (1 - %(a:‘c)2 - %(a@)"L + o($5))
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6. Limits:

a) Let us rewrite as

z—0

. log(1 + z5) £
= exp (il_% e, vl g”,

. 6)1/(z* sin?3z) _ 1; 1 6
51513:(1)(1 + z°) lim exp ($4 e log(l+ =z ))

To compute L, take the expansions of log(1 + ¢) and sint:

i 25 + o(zf) . z4+0(zf) 1
L=lm——-—"-" = lim ———— * _
z-0 z4(3% + 0(22))2 20 925 + o(z8) 9
The required limit is e!/9.
b) .
¢) Expanding the sine and tangent,
. z—sin(tanz)  z—tanz+ i tan® z 4 o(z?)
L= lim : = lim
z—0 z?sin(tanz)  z—0 z2(tanz + o(z))
= i £T% 523 + 228 + o(z®) _ fi —53° + o(z®) _ “l.
z—0 z3 + o(z3) =0 3 + o(z3) 6
d) e~2/3; e) —1.

f) Observe that
3xz*[log(1 + sinh® z)] cosh? z ~ 3z*sinh®z ~ 325 .
for & — 0. Moreover, the denomi_nator can be written as

Den : 1—(1+ 2%)"2cosz%/?

_ 1a,(1/2\ ¢ 6 1z, 15 6
—1-(1+2$ +( 5 )m +o(z”) ) (1 5% T % + o(z®)
1

g Te L 1 1

255

1
—1— 28t _las 16, 15 6y — 1.6 6.
=1 (l+ 7% T§% T o+ 52 +o(z )) 3% + o(z°)

32° +o(zf)
20 328 +o(z8)

The limit is thus

-3

; Expa.nd log(1 +t), cost, cosht, so that

h(z) = log (1 - %mz + %m,‘i + o(zs)) + log (1 + %(aas)z - %(cw)d‘ - o(xs})



256 7 Taylor expansions and applications

1 1 2 2 4
= —§$2 + Ez“ - % (-%x’* + %m"‘) +0(z°) + %zz - %z“ -
1 2 4 2
=5 (%32 + %2’.’4) + o(z®)
1 1 1
= E(a2 —1)z? + (E - —8~) (a* +1)z* + o(z).

If a # +1, h(z) is infinitesimal of order 2 for z — 0. If @ = %1 the first non-zero
coefficient multiplies 4, making h infinitesimal of order 4 for z — 0.

8. In order to compute h®)(z) at & = 0 we use the fact that the Maclaurin

(6)
coefficient of 28 is ag = h—ﬁ!@—l. Therefore we need the expansion up to order six.
Working on sin ¢ and sinh t, the numerator of A becomes

Num : sinh (:1:2 +2 (:\u"‘1 - :—;wa +o(:.cﬁ)))
i 2 a_45 i 2 a_46, 154 5
= sinh | 2° + 22* — 3% +0(z°) | =2* + 2z —3% + 52 + o(z°)
=z +2z* - ga:ﬁ + o(z").
Dividing 2% + 2z* — 126 + 0(2%) by 1 + 21° one finds
h(z) = 22 + 2z% — gzﬁ +o(z"%),

so A®)(0) = —I - 6! = —840.

9. Use the expansions of log(1 + £) and sinh# to write
1 2, 1., 13 1 3 2 3y _ 32 3 3
o(z) =4z — -2;(42:) + 5(43:) —4z — §(4z) +8z° + o(z°) = By o(x?).
Since the sine has the same sign as its argument around the origin, the function
y = sin ¢(z) is negative for z < 0 and positive for z > 0.
10. Using cost in Maclaurin’s form,

2cos(z + z?) = 2"(1 - %(z +z%)% + %(m +22) +o((z+ m2)4))

=2— (2% 4+ 22° + 7*) 4- é_%zf +o(z*)

11
— 9 w2 8 e 4
=2—-z°—2g 5% + o(z*)
.on some neighbourhood I of the origin-. Then the given inequality holds on I i
because the principal part of the difference between right- and left-hand side,
clearly negative, equals —11z4.

&




7.5 Exercises

11. Expand numerator and denominator separately as

) 1 1 rz)\2 2 % 1, 2
Num : 1+2m+§(2) +o($)—(1+2x+4!9: + o(z*)

_(L_1)\ 2 oy _ 1 2 2
_(8 4!)3: +o(:c)—12m +o(z*),

Den : [1,1/5 (1 + o:4’5) *

= g®/® (1+2:4f5)a = g*/® (1+aa:4/5 -l-o(:n‘*/"‘)) i

Then

. /2 _coshyz L2? + o(z?)

lim ————=—— = lim

a0+ (z+ V)% 20+ 72/5 (1 + 0z?/5 + o(z*/5))
1 o
- HE=Z S
12 Z B fa=10,

=40 if2>%, =30 ifa<lo,

+00 if2<% +oo if &> 10.

12. Writing arctant and sint in Maclaurin’s form provides

2
f(z) = (2$ - %(%)3 + 0(53)) —ax (o: - %xa $ o(:c"’))
= 4z? — 3—;%4 +o(z?) — aa® + =z* + o(z*)

=(4—a)7® - (% - %) ot + :(a:“).
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This proves f(z) infinitesimal of the fourth order at the origin if = 4. For such

value in fact,
f(z) = 10z* + o(z*).



