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Preamble 

 

This signal processing course is intended for first-year computer science master's students 

specializing in TAIP RSD AND IAA. It correspond to the official program of the “signal 

processing” module whose fundamental objective is the “mathematical description” of signals. 

This convenient representation of the signal makes it possible to highlight its main 

characteristics (frequency distribution, energy, etc.) and to analyze the modifications undergone 

during the transmission or processing of these signals. 

This manual, written with a constant concern for simplicity, is structured into Seven chapters. 

Are devoted to the basics of analog signal theory. The transformation of analog signals into 

digital signals At the end, some exercises are proposed. 

 

Dr. Abdelghani ROUINI 
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CHAPTER I 

General information about signals 

 

Introduction 

     The signal processing is a technical discipline which aims to develop, detect and interpret 

signals carrying information. This discipline is based on signal theory which gives a 

mathematical description of signals. This theory essentially uses linear algebra, functional 

analysis, electricity and the study of random processes. 

     Historically, signal processing appeared at the beginning of the 20th century, at the same 

time as electronics (FLEMING, 1905, detection and amplification of weak signals). However, 

we can note the first work in the 19th century with the invention of the electric telegraph 

(MORSE, COOKE, WHEATSTONE, 1830), the telephone (BELL, 1876) and the radio 

(MARCONI,POPOV, 1895). 

     Signal theory appeared in 1930 with the first work of WIENER and KINTCHINE on 

random processes, and that of NYQUIST and HARTLEY on the quantity of information 

transmitted on a telegraphic message. The essential contributions to signal processing and 

signal theory only came after the Second World War. Invention of the transistor in 1948, 

work by SHANNON on communication, WIENER on optimal filtering and SCHWARTZ on 

distributions. 

      Signal processing has become an essential science these days: all measurement and 

information processing applications implement processing techniques on the signal to extract 

the desired information. Initially intended to extract the signal from noise during 

measurements (sensors), signal processing is widely applied in telecommunications in diverse 

and varied applications. We can cite: 

- Information protection against noise such as techniques to reduce the rate 

error or to counter the effects of the channel (equalization technique). 

- The development of electronic applications and easy evolution towards new ones features 

such as selective filtering, the implementation of various modulation/ demodulation 

techniques, etc. 

The improvement in system performance in recent years is due, in large part, to the 

application of signal processing techniques. This is particularly the case in medical imaging, 

telephony and telecommunications. The hardware structures are essentially the same, but the 

signal processing techniques use sophisticated digital processing. The implications regarding 
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a medical diagnosis, the surveillance of an aerial or underwater area or even the location of 

faults are immediate. The objective of signal processing then appears as a mathematical tool 

used to extract as much useful information as possible from a signal disturbed by noise. 

Useful signals are often disrupted by parasitic signals (noise) which sometimes mask them 

completely. To attenuate, if not eliminate, this noise, it is necessary to know its characteristics 

as well as those of the useful signal. This is why signal processing is a very mathematical 

discipline. The techniques used can be applied to an analog (continuous) signal but given their 

complexity, digital processing is almost always necessary. It is made possible thanks to the 

power of calculation circuits and modern computers. 

1. From signal theory to signal processing 

The words signal And information  are common in everyday language. In the scientific world, 

these words have very specific meanings: in particular, information theory, signal theory and 

signal processing correspond to different notions, illustrated in Figure 1.1 in the context of a 

chain of communications. Even more generally: 

Signal theory represents the set of mathematical tools describing the signals and noises 

emitted by a source or modified by a processing system, in particular: the Fourier transform 

(TF), Functional analysis, Statistical analysis and Estimation method and which makes it 

possible to describe signals and noises emitted by a source, or modified by a processing 

system (figure 1.1). The fundamental objective of signal theory is the mathematical 

description of signals. It thus makes it possible to establish a representation of a signal 

according to time or space containing information to be stored, transformed, transmitted or 

received. Signal theory does not prejudge the physical nature of the signal, 

Information theory is the set of mathematical tools that makes it possible to describe the 

transmission of messages conveyed from a source to a recipient, 

Signal processing is the set of methods and algorithms that make it possible to develop or 

interpret signals carrying information. More precisely : 

- development: synthesis, analysis, regeneration, coding, modulation, identification, 

frequency change, 

- interpretation: decoding, demodulation, filtering, detection, identification, measurement, etc. 
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Currently, processing methods are almost entirely digital, which implies: 

- temporal sampling, and representation of the signals in discrete time, 

- digitization of the signal by analog/digital conversion, which involves quantification of the 

signal. 

Figure 1.1.Information and signal theory in an analog signal transmission chain.  

     Signal theory provides the description and mathematical tools (or modeling) necessary to 

manipulate deterministic or random signals, that is, to describe, characterize and compare 

them. It provides the means to highlight, in convenient mathematical form, the main 

characteristics of a signal: the spectral distribution of its energy or the statistical distribution 

of its amplitude for example, the classification of signals and their description in vector 

spaces, called Hilbert spaces. Signal processing is the technical discipline which, based on 

signal and information theory, the resources of electronics, computer science and applied 

physics, aims to develop or interpretation of signals carrying information. It finds its 

application in all areas concerned with the perception, transmission or use of this information, 

as soon as a sensor measures a physical quantity carrying information, which is disturbed (by 

noise or the measurement system) and which must be processed to extract useful information. 

Signal processing methods make it possible to imagine safer, more reliable, faster methods for 

analyzing and transmitting signals. It also offers the means to analyze the nature of alterations 

or modifications undergone by signals as they pass through functional blocks (generally 

electrical or electronic devices). The mathematical description of signals makes it possible to 

design and characterize processing systems. some information. Noise will represent any 

―signal‖ or disturbing phenomenon. 
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2. Signal and noise 

2.1. Definition of a Signal 

     comes from Latin signum : sign ; variation of a physical quantity of any nature carrying 

information. 

     A signal is therefore the physical representation of the information it carries from its 

source to its destination. Its physical nature can vary greatly: acoustic, electronic, optical, etc. 

It constitutes a physical manifestation of a measurable quantity (current, voltage, force, 

temperature, pressure, etc.). The signals considered in this course are time-dependent signals 

obtained using sensors. Signal theory remains valid regardless of the physical nature of the 

signal. 

     Word signal is almost always associated with the word noise. The latter is used in common 

language, but it takes on, in signal theory, a very particular meaning. For example, we are 

talking about : electrical signal(telephony),electromagnetic wave(telecommunication),acoustic 

wave (sonar),light wave (optical fiber),binary signal (computer). We also speak of 

measurement signals, control signals, video signals, audio signals, etc. depending on the 

nature of the information transmitted. 

2.2. Definition of Noise 

     comes from the popular Latin brugere : to bray and to roar: to roar; undesirable disturbance 

which is superimposed on the signal and useful data, in a transmission channel or in an 

information processing system and hinders the perception of this signal. 

     Noise corresponds to any disruptive phenomenon hindering the transmission or 

interpretation of a signal. 

- Signal to noise ratio 

     The signal-to-noise ratio measures the amount of noise contained in the signal. It is 

expressed by the ratio of the signal powers (PS) and noise (PB). It is often given in decibels 

(dB). 

                                                     (1.1) 
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Or log is the decimal logarithm. 

     Thus, it appears obvious that a fundamental problem in signal processing will be to extract 

the useful signal from the noise. The difficulty of the problem depends in particular on the 

proportion between signal and noise. This is measured by the signal-to-noise ratio (RSB, Or 

SNR in English for Signal to Noise Ratio). 

     The SNR therefore measures the quality of the signal. It is an objective measure. However, 

in many cases, especially those where the human operator is involved in the processing chain, 

this measurement is not very meaningful. This is especially true for audio signals or images 

and videos. Subjective measurements, or finer measurements, taking into account the 

properties of human perception must be implemented. 

3. Main functions of signal processing 

     The main functions of signal processing are: 

· Analysis : We seek to isolate the essential components of a signal of complex shape, in order 

to better understand its nature and origins. 

· The measure : Measuring a signal, in particular a random one, means trying to estimate the 

value of a characteristic quantity associated with it with a certain degree of confidence. 

· Filtering : it is a function which consists of eliminating certain unwanted components of the 

signal. 

· Regeneration : it is an operation by which we attempt to restore its initial form to a signal 

which has undergone various distortions. 

· Detection : through this operation we attempt to extract a useful signal from the background 

noise superimposed on it. 

· Identification : it is an often complementary process which makes it possible to classify the 

observed signal. 

· Synthesis : reverse operation of the analysis, consists of creating a signal of appropriate form 

by proceeding, for example, with a combination of elementary signals. 

· Coding : in addition to its function of translation into digital language, is used either to 

combat background noise or to try to save bandwidth or computer memory. 
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· Modulation and frequency change : are essentially means for adapting a signal to the 

frequency characteristics of a transmission channel, an analysis filter or a recording report. 

4. Areas of application 

      Telecommunications, Telephony, Radar, Sonar, Image processing, Astronomy, 

Geophysics, Automation, Measurement technology, Study of mechanical vibrations, 

Monitoring of industrial processes, Acoustics, Shape recognition, Biomedical analyses, etc. 

In telecommunications : whether in the field of telephony or in the transfer of digital data on 

land or via satellite, data compression is essential to make the best use of the available 

bandwidth and minimize losses. Another area of application is echo suppression. 

In audio: we seek to improve recording and compression techniques to obtain the highest 

possible sound quality. Echo correction techniques help reduce the effects of acoustic 

reflections in the room. Sound processing has greatly improved thanks to computers. Sound 

synthesis also makes it possible to create artificial sounds or recreate the sounds of natural 

instruments. She was at the origin of many upheavals in music. 

     The analysis of echoes makes it possible to obtain information on the medium on which 

the waves are reflected. This technique is used in the field of radar or sonar imaging. In 

geophysics, by analyzing the reflections of acoustic waves, we can determine the thickness 

and 

the nature of the subsoil strata. This technique is used in the field of mineral prospecting and 

in the prediction of earthquakes. 

In imaging : there are applications in the medical field (tomographic reconstruction, 

magnetic resonance imaging - MRI), in space (processing of satellite photos or radar images). 

This field also includes pattern recognition and compression techniques. 

     The processing of video sequences concerns compression, restoration, creation of special 

effects, extraction of descriptors (recognition of shapes and textures, movement tracking, 

characterization etc.) in order to produce automatic annotations from a basic perspective data 

(search by content). 
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     We can also cite some areas of application of signal processing : Measurement techniques, 

Study of mechanical vibrations, Monitoring of industrial processes, Pattern recognition, 

Biomedical analyses, Geophysics, Seismology, Astronomy, Radar, Sonar, Acoustics, etc. 

5. Models and measurement of signals 

5.1. Mathematical model 

     The mathematical model of a signal is a function of one, two or three variables : x(t) ; 

x(i,j); x(i,j,t). The first case is the most common: the variable t is usually time but it can also 

represent another quantity (a distance for example). The function represents the evolution of 

an electrical quantity or translated into this form by an appropriate sensor: microphone: 

acoustic signal, camera: video signal, etc. 

5.2. Functional model 

     A correspondence rule between a set of real or complex numbers is called functional. In 

other words, a functional is a function of functions. The signals resulting from a treatment or 

some of their parameters are often expressed by functional relationships. For example : 

 Weighted integral value (weighting function g(t)) 

                                                                            (1.2) 

 Weighted quadratic integral value 

                                                                 (1.3) 

Convolution product 

                                                            (1.4) 

Scalar product (evaluated on the interval T) 

                                                                        (1.5) 

Fourier transform 

                                                               (1.6) 
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6. Signal classifications 

     We recall that a signal is a function depending on one or more variables. For example, let 

the signal be : s(t), s is a quantity depending on a parameter t (by convention, we will use the 

letter t for the time variable). 

     A signal can be classified according to different criteria: its dimensionality, its temporal 

characteristics, the values it can take, its predictability. 

6.1. Dimensionality 

     We can take this criterion into account in two different ways: the dimension of the signal 

and the dimensions of the signal variables. 

     Let us first consider this classification criterion as being the dimension of the space of 

values taken by the signal (or the mathematical function modeling the signal). We then 

distinguish: 

–  the scalar signal, or single-channel signal that can take real or complex values. 

–  the vector signal, or multi-channel signal that can take real or complex values. 

     Take for example a Television (TV) signal. If we are interested in the three colors 

constituting an image, this TV signal takes values in a three-dimensional space, a first for red, 

a second for green and finally a third for blue; 

      [R; V; B] = TV (t). 

     On the other hand, if we now look at luminance, this signal takes its values in a one 

dimensional space; [L] = TV(t). 

     We can also consider this classification criterion as the dimension of the domain of the 

signal function, that is to say, the number of arguments taken by this function. We then 

distinguish: 

– The one-dimensional signal which corresponds to functions with a single argument, as by 

example time. 

– The multi-dimensional signal which corresponds to functions with several arguments. 

The TV signal corresponding to the luminance can be a function of time but also of Cartesian 

variables corresponding to a point on the screen; [ I ] = TV (t; x; y). This is a three-

dimensional signal. 
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     The signals covered in this course will be mono-dimensional depending on a variable 

which we will consider as time. All signal processing techniques generalize quite well to 

vector and multidimensional signals (see the image processing course). 

6.2. Temporal characteristics 

     We assume a scalar signal s(t). We then distinguish: 

- Continuous time signals or analog signals. The variable t ∈ 𝑅. We will note a signal analog 

as follows : sa(t) 

- Discrete time signals: these signals are defined for certain values of the variable t. 

We can represent a discrete time signal by an indexed sequence of the variable t: 

                      tn, n … 0,‐2,‐1,0,1,2,…..                                                                              (1.7) 

    tn specifies a time for which the signal is defined. Please note, this does not mean that the 

signal is zero between two moments; it's just not defined. 

     We will be interested here in a uniform distribution of moments tn which can be noted 

tn=nT where T is the time space between two consecutive samples. We can then uses s(n) Or 

sn as a simplified notation. We then have the following relationships: 

                                          (1.8) 

6.3. Values taken by the signal 

     We assume a scalar signal s(t). We then distinguish: 

– Continuous-valued signals that can take a real value in a continuous interval (for example, a 

voltage or an electric current). 

– Discrete-valued signals taking only values from a finite set of possible values. 

     A digital signal is a discrete time signal with discrete values. The operation of discretizing 

the continuous values of a signal into discrete values is a quantification, denoted q 

subsequently. 

     For example, an Analog/Digital converter processing 8-bit words; a signal quantized by 

this converter will take a discrete value among 256 possible. 
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6.4. Predictability of signals 

     We can distinguish two main classes of signals according to their predictability character. 

– Deterministic signals which can be represented explicitly by a mathematical function. 

– Random signals that evolve over time in an unpredictable manner. However, it is possible 

to mathematically describe certain statistical characteristics of these signals. 

     In this course we will mainly focus on deterministic signals.  

6.5. Physically realizable signals 

     An experimental signal is the image of a physical process and, for this reason, must be 

physically realizable. It is thus subject to a whole series of constraints: 

- Its energy can only be limited, 

- Its amplitude is a continuous function, 

- The spectrum of the signal is also necessarily limited and must tend towards zero when the 

frequency tends towards infinity. 

7. Classification methods 

     Different methods of classifying signals can be considered : 

- A phenomenological classification of form y=g(t) where the free variable is time; 

- A spectral classification of shape Y=G(f) where the free variable is frequency; 

- An energy classification: a fundamental distinction can be made between two categories of 

signals: Finite energy signals; 

     Signals with non-zero finite average power; 

- A morphological classification; according to the continuous or discrete nature of the 

amplitude and the free variable; 

- Dimensional classification; We consider one-dimensional signals S(t), the signals 

two-dimensional -or image- S(x,y), or even three-dimensional signals S(x,y,t) representative 
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for example the evolution of an image as a function of time. 

7.1. Phenomenological classification 

     This highlights the type of evolution of the signal. It may be of a predetermined nature or it 

may have unpredictable behavior. 

     A deterministic signal is a signal whose evolution over time can be perfectly predicted by 

an appropriate mathematical model. 

     On the contrary, most signals of physical origin have a non-reproducible character. Signals 

carrying information (speech signals, image signals, etc.) present a certain unpredictability, 

they will be modeled by random signals. 

7.2. Energy classification 

     We distinguish here between signals satisfying a finite energy condition and those 

presenting a finite average power and infinite energy. 

     We will call the total energy of a signal x(t) the amount : 

                                                                                 (1.9) 

and average power over all times of x(t) the amount : 

                                                           (1.10) 

     The first category includes signals of transient type, whether deterministic or random 

(example a square or Gaussian pulse) and the second category includes signals of permanent, 

periodic, deterministic type and permanent random signals. 

7.3. Morphological classification 

     Depending on whether the signal x(t) where the variable t is continuous or discrete (tk=kT ) 

we distinguish four types of signals (figure 1.2): 

• The continuous signal in amplitude and time commonly called analog signal. 

• The signal with discrete amplitude and continuous time called quantified signal. 
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• The continuous amplitude and discrete time signal called sampled signal. 

• The discrete signal in amplitude and time called digital signal. 

 Figure 1.2. Morphological classification.  

 

7.4. Spectral classification 

     The spectral analysis of a signal (or the energy distribution as a function of frequency) 

leads to a classification: 

• Low frequency signals. 

• High frequency signals. 

• Narrowband signals. 

• Broadband signals. 

     The bandwidth B of a signal is the main frequency range occupied by its spectrum. It is 

defined by the relation: f2-f1 with 0≤f1<f2, Or f1 And f2 are characteristic frequencies denoting 

respectively the lower and upper limits taken into account. 

     A signal with zero spectrum outside a specified frequency band B is called band limited or 

bounded-support spectrum signal. We also distinguish: 
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• Finite duration signals 

     Signals whose amplitude vanishes outside a time interval T, x(t) = 0 For t ∉ T are called 

signals of limited duration or limited support. 

• Signals limited in amplitude 

     This is the case for all physically realizable signals for which the amplitude cannot exceed 

a certain limit value, often imposed by electronic processing devices. 

• Even and odd signals 

     A signal is even if x(t) =x(-t); it is odd if : x(t) = -x(-t). Which implies that any real signal 

can be decomposed into an even part and an odd par t:  x(t) =xp(t) +xi(t). 

• Causal signals 

     A signal is said to be causal if it is zero for any negative value of time : x(t) = 0 for t<0. 

• Duration of a signal 

     A signal is of finite duration if it is zero outside a certain interval:  x(t) = 0, t ∉ T. These 

signals are called signals of limited duration or with limited support. 

7.5. Dimensional classification 

     We consider one-dimensional signals S(t), two-dimensional signals -or image- S(x,y) , 

even three-dimensional signals S(x,y,t) representing for example the evolution of an image 

depending on time. 

8. Phenomenological classification 

     The first classification (figure 1.3) is obtained by considering the profound nature of the 

evolution as a function of time. We can already classify them into two main categories: 

deterministic signals and random signals. 
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Figure 1.3. Phenomenological classification 

8.1. Deterministic signals  

     They are signals whose evolution, as a function of the independent variable, can be 

perfectly predicted by an appropriate mathematical representation. They are classified as 

follows: 

‐ Periodic signals, satisfying the relation: 

             S (t)=S(t+kT) ∀ t And T constant  (T: called period and k:entire)                        (1.11) 

Which obey a cyclical period distribution lawT; 

‐ Non-periodic signals, which do not benefit from this property. In the class of periodic 

signals, we find: 

‐ Sinusoidal signals (figure 1.4) of general equation: 

                      S(t)=A sin(2πft+ϕ)                                                                            (1.12) 

Which form the most familiar group of periodic signals;  

‐ Composite periodic signals (figure 1.3), with general equation : 

                                                          (1.13)  

- Pseudo‐random signals are periodic signals; but over a period of time, they behave like 

random signals. (figure 1.5). In the second class, that of non-periodic signals, we find: 

- Quasi‐periodic signals (figure 1.6), with general equation: 

                                                                                            (1.14) 

     Which result from a sum of sinusoids of incommensurable periods; 
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- Transient signals (figure 1.7), of general equation: 

                                                                  (1.15) 

 

Which are defined only on an interval (signals with limited support). 

 

                

               Figure 1.3. Sinusoidal signal                            Figure 1.4. Composite periodic signal 

  

 

 

 

  

                                             Figure 1.5. Pseudo‐random signal 

  

               Figure 1.6.Quasi‐periodic signal                      Figure 1.7.Transient signal 
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8.2.Random signals 

     These are signals whose mathematical model is not known, so their evolution over time is 

unpredictable. Their description is subject to statistical observations. 

     They obey the law of chance, we classify them as follows: 

-  stationary random signals, whose statistical characteristics are invariant over time; (figure 

1.8) 

- non-stationary random signals, which do not benefit from these properties; (figure 1.9) 

     In the class of stationary random signals, we find: 

-  Ergodic signals, if the statistical and temporal averages are identical; 

-  Non-ergodic signals, which do not benefit from this property. 

Figure 1.8.Stationary random signal in a large band.                         Figure 1.9.Non-stationary random  signal. 

 

9. Random process 

     A random process is a parameterized family of random variables, the result of the test is 

not a number, but a random function of time, in the case of several parameters, we speak of a 

random field. But we will generally limit ourselves to the case where a single variable S is 

sufficient. Two classes of processes are distinguished: 

-  Discrete process, in which the possible values of the random variable are discrete. 

-  Continuous process, in which the possible values of the random variable are continuous. 

     The aim of stochastic processes is to introduce the description of random signals carrying 

information to be transmitted or representing noise generated by a physical phenomenon and 
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essentially devoted to second order properties which are generally described by the 

correlation function which will be described by the following. 

9.1. Features 

     Consider k moments t1,...,tk. We can define k random variables S(t1),...,S(tk) whose 

statistical description passes for the probability law (distribution function).  

                                  (1.16) 

Or S1,...,Sk are the states taken for the variable S(t) at time t1,...,tk this is the order statistics k. 

9.1.1. The distribution function 

     The distribution function F(Si;ti) is the probability of obtaining by taking a sample from 

chance, a value less than or equal to (Si;ti) . 

     The distribution function is expressed by: 

                       F(Si;ti) = prob [S(ti) ≤ Si;ti]                                                                     (1.17)  

For the case of second-order statistics which uses a pair of random variables S(t1),S(t2) 

                      F(S1;t1) = prob [S(t1) ≤ S1;t1]                                                                  (1.18)  

For the case of order statistics1, is: 

 

 F(S1,S2;t1,t2) = prob [S(t1) ≤ S1,S(t2) ≤ S2;t1,t2].                                                   (1.19) 

For the case of second-order statistics which uses a pair of random variables S(t1),S(t2) 

9.1.2. Probability density 

     The probability density of the signal S(t) is by definition the derivative of the function of 

distribution 

                                                                                            (1.20)   

9.1.3. Expectation 

     Mathematical or average expectation E [S(t1)]of a random variable S(t) just now t1: 

                                                 (1.21)  
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This definition is equivalent to that of the mean of order 1 and degree 1.    

9.1.4. The averages 

     The means of one or more random variables are defined as the mathematical expectations 

of the different powers of these random variables. These are statistical and temporal averages. 

- Statistical averages (statistical moments): 

     The statistical mean of the random variable S(t) at a moment t1, is defined by: 

                  (1.22) 

 

     It characterizes the position of the results distribution curve. Now consider the pair of 

random variables S(t1) And S(t2) . 

     The moment of order 2 of the variables S(t1) And S(t2) is called the autocorrelation 

function statistics (FAC) of the process S(t) denoted by ΓSS: 

              (1.23) 

     In the case of two random processes S(t),Y(t) , the moment of order 2 and degree 1 is the 

statistical inter-correlation function denoted by ΓSY. 

                (1.24)  

 

Noticed : The order average n, of a random variable S(t) assumed to be continuous, at an 

instant t1, defined by: 

                                                      (1.25) 

- Time average (time point) 

     The temporal average 𝑆𝑖(𝑡)       of a sample Si(t) is given by the relation: 
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                                                            (1.26) 

     The FAC, which is the time average value of the product of S(t) by S(t+ τ)  given by: 

                                  

                                                                                                                                           (1.27)  

 

     In the case of two random processes S(t) And Y(t), the intercorrelation function 

(cross‐correlation) is given by the relation: 

                                                                  

                                                                      (1.28) 

 

Τ : Time difference or delay. 

Noticed : Two signals having different amplitudes can have identical time averages in the 

same time interval. 

9.2. Complex random process 

     A random process S(t) with complex values is defined in the same way as the real random 

process that we considered previously, but in two dimensions (R(t),I(t) ) as following : 

                                                                                       (1.29) 

For the moment, we obtain from the first order: 

                                                                               (1.30) 

For the second order moment : 

                                                              (1.31)  

And 

                                                             (1.32)   
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Or  

S
*
 (t2): is the conjugate of S(t2), 

Γ
*
SS(t1,t2): is the conjugate of  ΓSS(t1,t2) . 

     The relation (1.32) corresponds to the Hermitian symmetry ΓSS(t1,t2) Who is called the 

function statistical auto-correlation of the complex-valued random process. 

     Likewise, the definitions of temporal moments relate to complex processes. Thus the auto-

correlation function becomes:   

                                                                                                                                            (1.33) 

 

9.3.Stationarity 

     The notion of stationarity plays an essential role in the study of random signals, we find: 

9.3.1. Strictly stationary process (in the strict sense)  

     A random signal S(t2)is strictly stationary if its temporal law is invariant any change in the 

origin of time can be expressed by: 

                               F (S1,...,Sk ; t1,...,tk) =F (S1,...,Sk ; t1+ τ,..., tk+τ)                                     (1.34) 

For everything k, all τ and all series of moments t1,...,tk. 

9.3.2. Weakly stationary process (in the broad sense) 

     A weakly stationary or second-order stationary signal if only its probabilistic 

characteristics of order 1 and order 2 are invariant for any change in the origin of times. 

In this case we have: 

 E[S(t)] = Cst (Independent of t). 

 ΓSS(t1,t2) = E[S
*
(t1)S(t2)] = E[S

*
(t1)S(t1+ τ)] = ΓSS(τ) ( Function uniquely of τ = t2 - t1).  

 ΓSS(τ) is continuous at the origin. 

Noticed : 

 A second order stationary random signal is characterized by its correlation function 
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 The correlation function of a real signal is even since according to second order 

stationarity 

                          E[S(t)S(t- τ)] =E[S(t+ τ)S(t)] 

From where : 

                               ΓSS (τ) = ΓSS (-τ)                                                                             (1.35)                   

9.4. Ergodicity 

     A process is said to be ergodic when all its temporal averages (temporal moments) are 

identical, we write :  

                                 𝑆1(𝑡)       = 𝑆2 𝑡        = ⋯ = 𝑆𝑁(𝑡)                                                              (1.36) 

If the process is stationary and ergodic: 

                                     E[S(t)] = 𝑆(𝑡)                                                                                (1.37) 

Noticed : Ergodicity and stationarity are independent. 

10. Signals and Systems 

     A system is a physical entity that performs an operation on a signal. A system therefore 

defines an input signal and an output signal; the output signal corresponds to the 

transformation carried out by the system on the input signal. For example, the human ear is a 

system transforming a signal corresponding to a variation in sound pressure into parallel 

sequences of electrical signals on the auditory nerve. A microphone is a system somewhat 

similar to the previous one (in a very reductive first approximation...) insofar as a variation in 

acoustic pressure is transformed into a one-dimensional electrical signal. The study of such 

systems leads to analyzing the transformations between input and output signals for more or 

less complex systems; this activity is called signal processing. We will only talk here about 

digital signal processing. 

11. Special functions 

11.1. Dirac impulse 

     The Dirac momentum δ(t) (figure 1.10), also called unit impulse or delta distribution, is 

defined by the scalar product:  
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                                                                          (1.38) 

in a general way : 

                                 (1.39) 

in particular, by posing x (t) = 1, we obtain 

                                     (1.40) 

 

 

 

Figure 1.10. Dirac pulse 

Properties : 

• Either x(t) a continuous function in t = 0 or t = t0 

 

• Identify : 

 

• Translation : 

 

• Change of variable: 
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• Dirac periodic pulse sequence: (Dirac comb – figure 1.11) 

 

 

 

 

 

                                            Figure 1.11. Dirac's comb 

 

By convention the original value is zero. 

11.3. Unit jump function (or Echelon) 

 

The step function is not defined for t = 0 

                                    

                                                                                     Figure 1.13. Step function 

11.4. Ramp function 

     The ramp function can be defined from the unit jump function : 

  

  

 

 

 

                                 Figure 1.14. Ramp function 
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11.5. Door function 

 

                                                                             Figure 1.15. Function Door centered in t = 0. 

When introducing the change: t = t/T we obtain 

in a more general way for a rectangular pulse of 

duration T centered in t = τ: 

 

 

11.6. Triangle function 

The normalized triangular function:  

  

 

We can also write: 

 

Likewise :  

 

11.7. Cardinal sine function 

 

  

 

12. Notions of power and energy 

12.1. Energy of a signal 

    Either x(t) any signal (complex function),  

- Energy on [t1,t2] is defined by: 
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                                (1.41) 

Where the notation  𝑥(𝑡) 2  means x(t) * x
*
(t) ; x

*
(t) : is x(t) conjugated 

Finite energy signals satisfy the following condition : 

 

  Where Ex   is the total energy of the signal x(t)                (1.42) 
 

12.2. Average signal strength 

Either x(t) any signal (complex function), the average power on [t1,t2] is defined by: 

                                     (1.43) 

Special case of periodic period signalsT0 

                              (1.44) 

Or xp(t) is the signal over a period T0, then the average power over a period is equal to: 

                      (1.45) 

 

12.3. Finite energy signals 

A signal x(t) is said to have finite energy if it is summable square, that is to say if: 

                                                                  (1.46) 

Which implies Px=0. 

12.4. Finite average power signals  

A signal x(t) is said to have finite average power if:  

                                        (1.47) 

 

Case of periodic signals of period T: 

                                                                                           

                                           (1.48) 

If Px≠ 0, then Wx=  ∞ (infinite total energy signal). 
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Example : 

Calculate in each case the total energy and the total average power (a > 0). 

 

Solution : 
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CHAPTER II 

Fourier analysis 

 

 

Introduction 

     The aim of this chapter is to introduce Fourier analysis in the context of linear electronic 

systems. This analysis is a frequency type analysis, extended to regimes which are not 

necessarily sinusoidal. Fourier analysis is widely used in electricity as in physics. We 

introduce complex and real Fourier series. The terms of the Fourier series are sinusoidal and 

cosine functions. Once again, we see the importance of the harmonic analysis of systems, 

since the relevance of these decompositions is guaranteed for any linear system (principle of 

superposition). 

     The Fourier transform has already been pointed out as a mathematical special case of the 

Laplace transform. It is widely used in all technical branches with vast and diverse 

implications: from uncertainty relationships in physics to reciprocal spaces in crystallography, 

including of course electricity. For this second part of the chapter, we limit ourselves to the 

definition of the Fourier transformation where we approach the notion of spectrum of a signal. 

For more comprehensive information, we advise the reader to refer to an introduction to 

signal processing, a field where this mathematical tool is essential. 

1. Fourier series 

     Any periodic signal is decomposed into a sum of sinusoidal signals, this is a remarkable 

property. 

1.1. Complex Fourier series 

Function 𝑥: 𝑡 → 𝑥(𝑡) ; 𝑡 ∈ 𝑟𝑒𝑎𝑙𝑠 , defined on the interval [t1, t1+T], maybe expressed as a 

series of functions: 

                            (2.1) 
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All functions: 

                           (2.2) 

 

Constitutes a basis of the vector space containing the function x, and the coefficients Xn 

constitute the projections of the function x on this basis. 

     We use the usual scalar product and we obtain, for the calculation of these coefficients : 

                        

(2.3) 

1.2. Frequency spectrum 

     The different frequencies of the Fourier series decomposition are given by : 

                     (2.4) 

 

The frequency spectrum is given by the graph : 

                                       (𝑓, 𝑋𝑛)                                                                              (2.5) 

 

or physically: the amplitudes associated with the different frequencies. 

     This frequency spectrum is therefore a way of representing a periodic signal, and this 

remains valid in the general case of a non-periodic signal (of finite energy), which we will see 

with the Fourier transform. 

The frequency spectrum is discrete here, it contains: 

-  the continuous level : average signal value 

-  the fundamental component, of the signal frequency 

-  harmonics, of frequencies multiples of that of the fundamental 

-  negative frequencies,which have no direct physical significance; we owe their presence 

mathematically to the development of the real function in complex series. 

     These negative frequencies disappear with the use of real Fourier series. 
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1.3. Example: decomposition of a train of pulses 

     The following pulse is decomposed into a complex Fourier series, by choosing a period T : 

  

Figure 2.1. Example : decomposition of a train of pulses 

All calculations carried out we obtain for the coefficients: 

                                                                                                (2.6) 

Taking the discrete frequency as a variable : 

                                                   (2.7) 

We obtain the following expression : 

     (2.8) (Shape envelope sin x/x ) 

 

We obtain, for the representation of the spectrum of this impulse: 

 

  

 

 

 

  

Figure 2.2.Example: Discrete frequency spectrum of the pulse. 

 

     It should be noted that if we examine the sum of the Fourier series over the entire time 

axis, we obtain a periodic signal : 
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Figure 2.3.Example: pulse train 

     It therefore has two possible approaches: either we are only interested in a portion of the 

signal (pulse over a time interval T) and then the series only takes on meaning over this 

interval, or we develop over the entire axis real a periodic signal thanks to this Fourier 

decomposition. It is the latter case that is of general interest, because non-periodic signals are 

processed using the Fourier transform which generates a continuous spectrum. 

1.4. Real Fourier series 

     As the electrical signal is represented by a real function with real values, we can also treat 

this case without going through complex numbers. 

We have the following development, for the real Fourier series: 

                              (2.9) 

 

with, for the coefficients: 

 

     Odd signals develop into a sine series, and even signals develop into a cosine series, which 

further simplifies the calculations. The spectrum obtained is unilateral, hence the name 

unilateral Fourier series. 

     In the previous example of the train of rectangular pulses (figure 2.3). We obtain, as a one-

sided Fourier expansion: 

                                                       (2.10) 
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And for the graphical representation of the discrete (unilateral) spectrum : 

  

 

 

 

 

Figure 2.4. Example: Discrete unilateral frequency spectrum of the pulse. 

 

    Note that the unilateral spectrum is not the truncated version of the bilateral spectrum: the 

harmonics have double the amplitude compared to the latter, except in the special case, that of 

zero frequency. It should be seen that the bilateral spectrum of a sinusoidal signal is given by 

the two frequencies: the positive and the negative, and their amplitude is half that of the 

frequency of the unilateral spectrum.  

Example : 

Or an even signal x(t) of period T defined on [0,T/2[  represented by the figure above: 

 

- Develop the periodic signal in Fourier series x(t). 

      The following development in Fourier series:  

 

with, for the coefficients: 
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1.5. Alternative Fourier series 

      It is defined by: 

                                (2.11) 

 

 

An: amplitude of the spectral component; 𝜑𝑛 : phase of the spectral component. 

1.6. Development of a periodic function in Fourier series 

1.6.1. Imaginary exponential series 

• Fourier's theorem: 

Either : 𝑓: 𝑅 → 𝐶  periodic  of period T, pulsation 𝑘 =
2𝜋

𝑇
  If f is summable square on [0,T],so 

  or for 𝑛 ∈ 𝑍 :  

 

• Fourier spectrum: It is   𝐶𝑛  , 𝑛 ∈ 𝑍  : (In general,  𝐶𝑛   decreases when   𝑛 increase) 

. 

1.6.2. Sine and cosine series  

• General case : 
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• Parity: 

If x(t) is even, we will have ∀ n∈N, bn=0 

If x(t) is odd, we will have ∀ n∈N, an=0 

• Case of a real function: 

If  an, bn∈R, an cos(knx) +bn sin(knx) = a'n cos(knx + 𝜑𝑛 )  

and then x(t)=a0 +  𝑎′n  cos(kn𝑡 +  𝜑𝑛) ∞
𝑛=1  

The term for n=1 is called the fundamental or first harmonic. The one for n=2 is called second 

harmonic, etc.  

1.6.3. Bessel–Parseval equality 

(2.12) 

 

1.7. Development of a closed support function 

1.7.1. Example 

We have 𝑘𝑛 = 2𝑛
𝜋

𝐿
= 𝑛

𝜋

𝑙
 , and the function is odd. We then find:  

 

  

 

 

1.7.2. Spatial and temporal function 

- Spatial functions 

x: abscissa, L:length (or wavelength), 𝑘 =
2𝜋

𝐿
 spatial pulsation. We have: 

 

- Temporal functions 
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𝜔: temporal pulsation;  

 

2. The Fourier transformation 

     In electronics and signal processing, signals are not all periodic, this is even the exception. 

The development in Fourier series therefore does not necessarily represent the preferred 

analysis tool, since it is necessary for this to have periodic signals. 

2.1. Fourier transformation: definition 

The Fourier transformation can be seen mathematically as a special case of that of Laplace, by 

posing 𝑝 = 𝑗2𝜋𝑓  , for the frequency variable. We define : 

(2.13) 

Or 

(2.14) 

Function : 𝑋: 𝑓 → 𝑋(𝑓)  is the Fourier transform of the function: 𝑥: 𝑡 → 𝑥(𝑡)  . In signal 

processing, we more readily use the variable frequency f(Hz) that the pulsation 

 𝑤 = 2𝜋𝑓  
𝑟𝑎𝑑

𝑠
  , usually used as a Fourier transform. 

We say that x(t) And X(f) form a Fourier transform pair, it is denoted by: 

                                         𝑥 𝑡 ⇌ 𝑋(𝑓)                                                                               (2.15) 

     The Fourier transform exists if the three DIRICHLET conditions are verified (these are 

sufficient but not necessary conditions): 

- x(t) has a finite number of discontinuities on any finite interval, 

- x (t) has a finite number of maxima and minima on any finite interval, 

- x(t) is absolutely integrable, i.e.: 

                                                              (2.16) 

It is important to note that all finite energy signals, i.e. all signals of L2. 

                                             (2.17) 
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admit a Fourier transform.  

Example : 

We notice rect T(t) the rectangular pulse defined by: 

                                                    (2.18) 

We then search to calculate the Fourier transform (TF) of x(t) 

 

And finally : cardinal sine function. 

 

2.2. Amplitude spectrum and phase spectrum 

     In the general case, the Fourier transform of a function produces a complex-valued 

function. Thus, we can obtain two pieces of information from the Fourier transformed 

function: 

The amplitude spectrum : (𝑓,  𝑋(𝑓) )  

The phase spectrum: (𝑓, arg(𝑋(𝑓))  

2.3. Example : 

We take the previous pulse with the Fourier transform: 

  

 

  

 

 

Impulse equation : 𝑥 𝑡 = 𝐴 𝑟𝑒𝑐𝑡 (
𝑡

∆
) 

All calculations done, we obtain for its Fourier transform: 𝑋 𝑓 = 𝐴. ∆
sin (𝜋∆𝑓)

𝜋∆f
 . We notes that 

in this case, X(f) is a real function. It can be represented graphically: 
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Figure 2.5.Example: Fourier transform of the rectangular signal. 

As X(f) is real, its phase spectrum is zero for the positive parts of the TF only, and its 

amplitude spectrum has the following appearance: 

 

 

 

 

 

                          Figure 2.6.Example: Amplitude spectrum of the rectangular signal. 

Remarks 

     As with the development in Fourier series, we witness the appearance of negative 

frequencies, which cannot be interpreted directly, but which nevertheless carry energy. 

     The Fourier transform here corresponds to the envelope of the discrete spectrum of the 

Fourier expansion. In this Fourier transformation, all the frequencies are used for the 

frequency representation of the time signal: the spectrum is continuous. 

     Unlike the development in Fourier series which generates a periodic function on the entire 

real axis whatever the values taken by this function outside the period considered, the Fourier 

transformation is applied to the function acting on the entire real axis . A correspondence is 

thus created between the temporal space where the signal evolves, and the slightly more 

abstract frequency space. Electricians call this time-frequency duality. Crystallographers talk 

about direct space and reciprocal space, etc. 

     As already mentioned previously, the usefulness of this transformation is to obtain another 

representation of a signal. This frequency representation is essential in signal processing. The 
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situation is analogous to that prevailing for the Laplace transformation, but here the space 

given by the Fourier transformation is well identified: it is a space of frequencies: 

 

 

Figure 2.7.Time-frequency duality. 

2.4. Transfer function 

     Here we present an example, where we use the Fourier transform, to solve a differential 

equation. This is not the main use of this tool, but it allows you to make a point regarding the 

transfer functions. 

     If we reduce the Laplace transformation to that of Fourier, we take as variable:  

2.Thus, the Laplace transfer function transforms into that of Fourier with 

     this substitution. And this Fourier transfer function is nothing other than that obtained with 

complex numbers and which in fact corresponds to the transfer function in the harmonic 

regime. 

System block diagram: 

 

Figure 2.8. Block diagram of the system. 
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In temporal space, we have : 

                                          𝐿 𝑥 𝑡  = 𝑦(𝑡)                                                                         (2.19) 

L: linear operator; x(t): system excitation; y(t): system response. 

In frequency space, we obtain: 

                                        𝑌 𝑓 = 𝐺 𝑓 𝑋(𝑓)                                                                    (2.20) 

X(f): Fourier transform of the excitation; Y(f): Fourier transform of the response. G(f) : 

Transfer function. 

Example: RC cell excited by a unit step  

     Consider an RC cell, to which we apply a unit scale: 

 

By the voltage divider in the field of p, we obtain the Laplace transfer function: 

 

Fourier transfer function: 

 

Input signal: 

 

Output signal: 

 

Inverse transformation of the output signal: 
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2.5. Main properties of the Fourier transform  

Linearity 

If      

 

Scale Property – Dilation 

  

Time delay 

  

Frequency shift 

  

Amplitude modulation 

 

 

Averages   

  

Differentiation in the time domain 

  

Integration in the time domain 

  

Duality property 

If     

Conjugation properties and symmetry 

If      
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We deduce that, if x(t) is real, then: X(f) =X
*
(-f), And : 

- The real part of X(f) is even, 

- The imaginary part of X(f) is odd, 

- The module of X(f), |X(f)| is even, 

- The phase of X(f), φ(f) is odd. 

Parity 

Odd : 𝑥 𝑡 = 𝑥 −𝑡 ⇌ 𝑋 𝑓 = 𝑋(−𝑓) 

Even : 𝑥 𝑡 = −𝑥 −𝑡 ⇌ 𝑋 𝑓 = −𝑋(−𝑓) 

Impulse of Dirac 

 

2.6. Parseval's theorem 

     Parseval's equality, sometimes called Parseval's theorem, is a fundamental formula in the 

theory of Fourier series. This formula can be interpreted as a generalization of the 

Pythagorean theorem for series in Hilbert spaces. In many physical applications (electric 

current for example), this formula can be interpreted as follows: the total energy is obtained 

by summing the contributions of the different harmonics. The total energy of a signal does not 

depend on the representation chosen: frequency or time. 

                                                                                 (2.21) 

 

2.6.1. Energy, Effective value by the Fourier series – Paseval formula 

The effective value of the signal is given by: 

                     (2.22) 
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CHAPTER III 

Laplace transform 

 

  Introduction 

     The Laplace transform is an integral operation that allows you to transform a function of a 

real variable into a function of a complex variable. By this transformation, a linear differential 

equation can be represented by an algebraic equation. It also makes it possible to represent 

particular functions (Heaviside distribution, Dirac distribution, etc.) in a very elegant way. It 

is these possibilities that make the Laplace transformation interesting and popular with 

engineers. This transformation gave rise to the technique of operational calculation or 

symbolic calculation which facilitates the resolution of linear differential equations which will 

represent the systems that we are going to study. 

1. Laplace transform 

1.1. Definition 

Either f(t) a real or complex valued function of the real variable t defined from [ 0 to ∞ [ And 

either 𝑝 = 𝛼 + 𝑗𝛽 a complex variable; the expression: 

                 (3.1) 

Where the symbol ℒ(𝑓(𝑡)) means the Laplace transform. In this case, it is called the One-

sided Laplace transformation. 

     The Laplace transform therefore makes it possible to transform the time problem into the 

frequency domain. When we obtain the desired answer in the frequency domain, we 

transform the problem again into the time domain, using the inverse Laplace transform. In the 

Laplace domain, derivatives and integrals are combined using simple algebraic operations; no 

need for differential equations. 

We divide the Laplace transform into two types: 

- Functional transformation: it is the Laplace transform of a specific function, like 
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- Operational transformation : it is a mathematical property of the Laplace transform, like the 

calculation of the derivative of f (t). 

1.2. Exponential order 

     We will say that a function  f (t) is of exponential order at infinity if and only if, there 

exists a pair of real numbers and M such as : 

(3.2) 

 

1.3. Existence of the Laplace Transformation 

  Either f(t) a piecewise continuous function on the closed interval [0, a] (for everything a > 0)  

and having an exponential order at infinity such that  𝑓(𝑡) = 𝑀𝑒𝛼𝑡 , ∀𝑡 ≥ 0 ; then, the 

transformation of  laplace ℒ(𝑓(𝑡)) exists and is defined for 𝑝 > 𝛼 

1.4. Uniqueness of the Laplace Transformation 

     Let f (t), And g(t), two piecewise continuous functions with exponential order at infinity. 

Suppose that: 

ℒ 𝑓 𝑡  = ℒ(𝑔(𝑡))  

So f (t) = g (t) for 𝑡 ∈ [0, 𝐷], for ever 𝐷 > 0, except perhaps at a finite number of points. 

Example 1: 

If  f (t) = 1, then:  

in this example, the integral converges if and only if the real part of p > 0 

Example 2: 

If  f (t) = e
at

 so :  

There is convergence if Re{(p-a )}> 0 or Re{p} > Re{a}. Such as Re : represents the real part. 

1.4.1. Bilateral Transform 

     We also define a Laplace transformation on the domain Rreal numbers: 

                                              (3.3) 

     This transformation is not used much in the field of engineering because we consider 

signals which respect causality and therefore which exist from an instant t0. 
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1.5. Inverse Laplace Transform 

     We can return from the Laplace transform to the function of time f (t) by the following 

inverse transformation: 

(3.4) 

    where the integration path can be chosen any in the complex plane provided it remains in 

the convergence domain of F(p). 

2. Properties of the Laplace Transform 

2.1. Addition 

     The Laplace transform of a sum of functions f1(t) And f2(t) is equal to the sum of their 

Laplace Transforms. 

                                         (3.5) 

2.2. Multiplication by a constant 

                                                  ℒ 𝑐𝑓 = 𝑐. ℒ(𝑓)                                                                  (3.6) 

2.3. Linearity 

     The properties of addition and multiplication by a constant when combined lead to the fact 

that the Laplace transform is a linear transformation: 

                                                  (3.7) 

Example : 

     Determine the Laplace transform of the function f(t) = coswt. This is obtained using the 

exponential expression. 

 

By applying the Laplace transform and the linearity property, we have: 
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2.4. Derivatives 

The first derivative is obtained by : ℒ 𝑓 ′ 𝑡  = ℒ 𝑝𝑓 𝑡 − 𝑓 0  = 𝑝𝐹 𝑝 − 𝑓(0)  

The second derivative:  ℒ 𝑓 ′′  𝑡  = ℒ 𝑝2𝑓 𝑡 − 𝑝𝑓 0 − 𝑓 ′(0) = 𝑝2𝐹 𝑝 − 𝑝𝑓 0 −

𝑓 ′(0) 

The third derivative: ℒ 𝑓3 𝑡  = ℒ 𝑝3𝑓 𝑡 − 𝑝2𝑓 0 − 𝑝𝑓 ′ 0 − 𝑓 ′′ (0) = 𝑝3𝐹 𝑝 −

𝑝2𝐹 𝑝 − 𝑝𝑓′ 0 − 𝑓 ′ ′(0) 

 

Generalization to order derivatives n: 

     suppose that f(t), and its derivatives fk(t) , For k=1,2,..,notare piecewise continuous and 

have an exponential order to infinity. So we have: 

                                    (3.9) 

If we consider the initial values all zero, we: 

 

2.5. Initial Value Theorem 

     We can determine the value of the function f(t) at the origin if we know the limit at infinity 

of its Laplace transform. 

                                    𝑓 0+ = lim𝑠→∞ 𝑝𝐹(𝑝)                                                              (3.10) 

2.6. Final Value Theorem 

    We can determine the value of the function f(t) to infinity if we know the limit for s → 0 its 

Laplace transform. 

                   𝑓 ∞ = lim𝑠→0 𝑝𝐹(𝑝)                                                              (3.11) 

2.7. Delay or delay or rule of translation in t 

     If ℒ(𝑓 𝑡 = 𝐹(𝑝)) so ℒ(𝑓 𝑡 − 𝑇 ) = 𝑒−𝑝𝑇𝐹 𝑝 . 𝑒−𝑝𝑇  is called the delay factor. 

2.8. Rule of  complex translation in p 
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Example :  
 

 

 

 

2.9.  Product of two functions 

 

2.10. Convolution product 

                               (3.12) 

2.11. Either f(t) a piecewise continuous function on [0, A] (for all A > 0) and has exponential 

order at infinity. So, we have: 

Where F
(n)

 is the derivative of order  of the function F.   

2.12. Either f(t) a piecewise continuous function on [0,A] (for all A >0) and  has an order 

exponential to infinity. Suppose that the limit lim𝑠→0+
𝑓(𝑡)

𝑡
 , is finished. So, we have: 

(3.13) 

 

2.13. Similarity rule (Change of scale) 

Either g(t) = f(at) (a > 0), then   

3. Special functions 

     In the study of systems and the differential equations which are used to describe them, we 

use a particular family of functions, the singular functions which are functions of functions 

or Distributions. To fully understand these singular functions, they must be studied within 

the framework of the theory of distributions, which is a theory that generalizes the theory of 

functions. 

     The most frequently used distributions are the unit level distribution (Heaviside 

distribution). The unit impulse distribution (Dirac distribution) and the unit slope distribution. 

3.1. Unit scale function (Heaviside Distribution) 

     We call associated unit step function at t0, the function of time noted u(t-t0) and defined 

by : 
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The Laplace transform of the unit level:  

For the particular case or t0=  0, we write: ℒ 𝜇 𝑡  =
1

𝑝
 

3.2. Unit impulse function (Dirac distribution) 

     We can define the pulse unit 𝛿(𝑡) as a null function everywhere on ℝ  except for one 

 point t0 or it takes an infinite value. 

  

     The Dirac Distribution can be approximated by the signal represented in Figure 3.1, if we 

make tend ε towards 0,δ1 does not tend towards a limit in the sense of functions, but in the 

sense of distributions because δ1(t) is not differentiable at the two points of discontinuity. This 

limit is δ(t) , which is called the Dirac distribution 

 

Figure 3.1. The Dirac Distribution. 

     The Dirac distribution can be obtained as the derivative of the Heaviside distribution. The 

Laplace transform of the Dirac Distribution is equal to unity: ℒ 𝛿 𝑡  = 𝐹 𝑝 = 1. It is 

obtained by the following operations: 

 

(We use limited developments or the Hospital rule). We observe that the surface is equal to 1 

whatever ε therefore:  
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This function (distribution) also has the following particularity:  

 

 

3.3. Power function 
 

Lets                ; So let's calculate  

Let's pose the change of variables:  

; from where : (the first hook is invalid)  

from where : 𝐼𝑛 =
𝑛

𝑝
 𝐼𝑛−1 and so : 𝐼0 =

1

𝑝
 ; 𝐼1 =

1

𝑝2 ; 𝐼2 =
2

𝑝3 ; … ;  𝐼𝑛 =
𝑛 !

𝑝𝑛+1 

from where : 𝐹 𝑝 = ℒ 𝑡𝑛𝑢 𝑡  =
𝑛 !

𝑝𝑛+1  (𝑛 ∈ ℵ) 

4. Laplace method (Operational calculation) 

     Using Laplace's method to solve differential equations is called operational calculus or 

symbolic calculus. It allows knowing the complete solution of a linear system subjected to a 

wide variety of any transient or periodic signals. The treatment is generally done in four steps 

as we will see in the following example: 

1) - We establish the differential equation to solve. 

2) - We apply the derivative and other properties of the Laplace transform to the differential 

equation considered. By this transformation, we pass from the time domain into the (complex) 

Laplace domain. 

3) - We determine the solution Y(p) in the Laplace plane which we develop in simple terms. 

4) - The solution remains to be determined y(p). To do this, we perform the inverse 

transformation of Y(p) using the transformation table. 

4.1. The expansion of y(p) in simple functions 

     To be able to invert the Laplace transform, which is expressed as: Y(p) =N(p)/D(p), we 

decompose the equation obtained into a product of factors. Depending on the form of 

decomposition obtained, we distinguish three cases. 

4.1.1. The poles of Y(p) are all simple 
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     Assuming that D(p) has poles p0,p1,p2,...,pn. we can write Y(p) Under the form : 

                              (3.14) 

 

- We know the time response for each term of the sum, we just need to determine the 

coefficients A1, A2, An. To do this, we can proceed using the identification method or better 

still by using residue decomposition techniques. Using the residue technique, we proceed as 

follows: to determine A we multiply both sides of the equation by p - p0 then we make it 

tender p towards p0. We proceed in the same way for the other coefficients. Here is an 

example illustration of this technique. 

Either p1,p2 poles of Y(p) 

 

The coefficient that we want to determine A, we multiply Y(p) by (p-p1) as following : 

 

We make s tend towards s1 as following : 𝐴 = lim𝑝→𝑝1
𝐻 𝑝  𝑝 − 𝑝1 = 𝐴. 1 + 𝐵. 0 =

1

𝑝1−𝑝2
 

Likewise for B; we find: 𝐵 = lim𝑝→𝑝2
𝐻 𝑝  𝑝 − 𝑝2 = 𝐴. 0 + 𝐵. 1 =

1

𝑝2−𝑝1
  

Finally knowing that 𝐴/(𝑝 − 𝑝0) is the transform of 𝐴𝑒𝑝0𝑡 , we obtain the solution : 

 

4.1.2. If there is a multiple pole 

If a function with a complex variable has a simple pole,𝐻 𝑝 =
𝐴

𝑝−𝑎
 we obtain A by: 

 

If  H (p) has a multiple pole of order n: 𝐻 𝑝 =
𝐴

(𝑝−𝑎)2  ; we determine A using the expression: 

 

Example :  
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Let   

 

Generally speaking, if: 

 

 

4.1.3. The poles are complex conjugates  

  with   

We will then have 𝑌 𝑝 =
𝐴0

𝑝+𝑝0
+

𝐴1

𝑝−𝑝0
  with  𝐴0 = 𝐴𝑒𝑗𝜑   𝑎𝑛𝑑  𝐴1 = 𝐴𝑒−𝑗𝜑  

     The corresponding coefficients of the decomposition into simple fractions will also be 

complex conjugates (A and A
x
). The solution contains oscillatory terms: 

and with  ∅ = arg(𝐴) 

     We are therefore in the presence of a damped oscillation if a is negative, of an amplified 

(divergent) oscillation if a is positive, of a simple sinusoid if a=0. 

4.2. Applications of the Laplace transform 

     We consider the response of the system corresponding to the circuit above, subjected to a 

signal step (assumed unitary) U(t). The Laplace transform of the step signal is: ℒ 𝑢(𝑡) =
1

𝑝
 

For t>0 we have : u(t) =E=constant. We are looking for the current i(t) which circulates in the 

circuit of the figure below: 
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1- Ohm's law allows us to write the differential equation:𝑢 𝑡 = 𝑅. 𝑖 𝑡 + 𝐿.
𝑑𝑖

𝑑𝑡
  

2- We apply the Laplace transformation, in each of these elements taken separately 

remembering F'(p) =pF(p) ; Which give : 𝑈 𝑝 = 𝑅. 𝐼 𝑝 + 𝐿. 𝑝. 𝐼(𝑝)  

Replacing U(p) by E/p, the differential equation is expressed in Laplace space by: 

 

3- We deduce I(p) which we break down into simple terms, namely: 

 

4- We apply the rules for determining the coefficients, we obtain: 𝐼 𝑝 =
𝐸

𝑅
(

1

𝑝
−

1

𝑝+𝑅 𝐿 
) The 

transform table gives us the solution: 𝑖 𝑡 =
𝐸

𝑅
(1 − 𝑒

−𝑅

𝐿
𝑡) 

5. Modeling 

     Automation is the science studying automation and dealing with the substitution of 

automatic mechanisms for all operations capable of being carried out by humans. This science 

was formerly called cybernetics. Among the components of this science, we will be 

particularly interested in(automatic) control of continuous dynamic processes. 

     In this context, we distinguish automatic linear or non-linear, continuous (analog control) 

or discrete time (digital control). 

You should know that the order (orenslavement) of a physical process requires: 

- the identification (behavior model) or modeling (knowledge model) of its dynamic behavior   

→ equation; 

-  the synthesis of a control law  → transfer function and Laplace transformation; 

-  the physical implementation of this control law → correction. 

The modeling of a physical system involves a system of differential equations. Its resolution 

(more or less difficult) allows the determination of transient regimes of the dynamic system. 

These regimes can also be determined using operational calculation based on the Laplace 

transformation.  
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Definition of the Laplace transform 

     Either f(t) a causal function, so the Laplace transform of  f  is 𝐹 𝑝 =  𝑒−𝑝𝑡𝑓 𝑡 𝑑𝑡.
+∞

0
 We 

say that F (p) is the image of f (t) in the symbolic domain and f (t) is the image of F(p) in the 

time domain. We call Laplace transformation the application such as ℒ 𝑓 = 𝐹. 

Properties 

     We suppose that F(p) And G(p) are the images of f(t) And g(t), two causal functions. 

Uniqueness : Any time function f(t) has a unique image F(p); and reciprocally.  

Linearity 

- The image of 0 is 0. 

- The image of k.f(t) is k.F(p). 

- The image off(t) +g(t) is F(p) +G(p). 

Derivation – Integration 

- The image of f'(t),the derivative of f is pF(p) -f(0) with most often, f(0) = 0. 

 - The image of  𝑓(𝑢)
𝑡

0
𝑑𝑢,is the primitive of f  is 

1

𝑝
𝐹(𝑝). 

Scale factor  : The image of 𝑓 𝑎. 𝑡 𝑖𝑠 
1

𝑎
𝐹(

𝑝

𝑎
) 

Delay and Amortization 

- The image of 𝑓 𝑡 − 𝜏 𝑖𝑠 𝑒−𝜏𝑝𝐹 𝑝 . 

- The image of 𝑒𝜔𝑡𝑓 𝑡 𝑖𝑠 𝐹  𝑝 + 𝜔 . 

Final and initial value theorem 

- 𝑓 0 =  lim𝑡→0 𝑓 𝑡 = lim𝑡→∞ 𝑝𝐹 𝑝  

-   lim𝑡→+∞ 𝑓 𝑡 = lim𝑝→0+ 𝑝𝐹 𝑝  

Convolution: 

The image of the convolution product  𝑓 𝑡 ∗ 𝑔 𝑡 𝑖𝑠 𝐹(𝑝) × 𝐺(𝑝) 
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6. Usual  transformations 

 

7. Transfer function 

     A transfer is the transmittance 𝐻 𝑝 =  
𝑠(𝑝)

𝐸(𝑝)
  of a linear system generating a signal of exit 

s(t) from an entry e(t). 

 

     Knowing that 𝑠 𝑡 = ℒ−1 𝐻 𝑝 𝐸(𝑝) , we have 𝑠 𝑡 = 𝑓 𝑡 ∗ 𝑒(𝑡)  where h(t) is the 

answer impulse of the physical system. 

 

Temporal image of causal functions 

 
Symbolic image 
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8. Transactions on transfers 

8.1. Cascading transfers 

     Consider the following diagram:  

 

Transmittance is calculated : 

8.2. Reactive transfers 

     Consider the following diagram:  

The transmittance is written:  

 

Representation of the frequency response of a transfer 

     The frequency response translates the behavior in sinusoidal regime, it is obtained by 

replacing p by jw Or w is the pulsation expressed in rad/s. The frequency  f And the period T 

are linked to the pulsation by the relationships :𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
 

     A frequency response can be characterized by its module and by his argument: 

 𝐻 𝑗𝜔 = 𝑝 𝜔 𝑒𝑗𝜃 (𝜔). The gain can be expressed in decimal or in decibel 𝑝𝑑𝐵 = 20𝑙𝑜𝑔𝑝 

9. Bode diagram 

     Bode's diagram consists of a gain diagram in dB and a phase diagram 
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     In rd Or d°. To trace them, we use the asymptotic Bode diagrams. They are defined 

piecewise by studying locally (for given frequency bands) the asymptotic behavior of the 

frequency response. 

     We reduce ourselves, as much as possible, to a product of transfers from 1erand 2thorder, 

for which we know the asymptotic diagrams well; and we proceed by superposition to obtain 

the final Bode diagram. 

10. Nyquist Plan – Hall Abacus 

     Frequency representation of 𝐹(𝑗𝜔) on Nyquist's place: 

 

 

suppose that 𝐹(𝑗𝜔) designates the FTBO of a process. We then have:   

By therefore, the point (-1, 0) is critical at the Nyquist location. 

     Furthermore, the distance to the critical point on the plane gives : 1 + 𝐹(𝑗𝜔)  

Hall's abacus gives the modules and arguments of 
𝐴(𝑗𝜔 )

1+𝐹(𝑗𝜔 )
  𝑓𝑜𝑟 𝑎  𝐹(𝑗𝜔) given. We can 

subsequently deduce the modules and arguments of the  FTBF calculating 𝐵 𝑗𝜔 ,  and 

applying the following relationship:𝐹𝑇𝐵𝐹  𝑗𝜔 =
𝐹(𝑗𝜔 )

1+𝐹(𝑗𝜔 )
× 𝐵−1(𝑗𝜔). 

11. Black Plane (Nichols) – Black Abacus  

     Frequency representation of 𝐹(𝑗𝜔) on Black's place: 
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The critical point is now (-180°, 0 dB). 

For a  𝐹(𝑗𝜔) given, Black's abacus gives the modules and arguments of 
𝐹(𝑗𝜔 )

1+𝐹(𝑗𝜔 )
 

12.Temporal and frequency analysis  

     We notice F (p) there Laplace transform of a function f (t) 

12.1. Transform of a differential equation with constant coefficients, transfer function 

     We consider the following physical system 

  

in which e(t) And s(t) are linked by a linear differential equation with constant coefficients 

without constant term: 

 

The system is then linear. 

If the initial conditions following are zero : 

 

The transform of the differential equation without constant term is expressed by: 

 

⇓Laplace and zero initial conditions 
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We can then define  a transfer function : 

 

that's to say : 

 

n = system order. 

𝐾𝑝 = lim𝑝→0 𝐹 𝑝 : system static gain. 

𝐹 𝑝  can be put in the form α =system class . 

 (possibly α= 0) = number of integrations in the system)  

12.2. First order systems 

     These are systems such as: 𝜏. 𝑠′ 𝑡 = 𝐾. 𝑒(𝑡) 

𝐻 𝑝 =
𝑆(𝑝)

𝐸(𝑝)
=

𝐾

1 + 𝜏𝑝
 

The transfer function is written 

K: Static gain  

τ : time constant 
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CHAPTER IV 

The z-transform 

 

Introduction 

    The z-transform of a sequence x[n] is 

  

     The z-transform can also be thought of as an operator Z{·} that transforms a sequence to a 

function: 

 

In both cases z is a continuous complex variable. 

     We may obtain the Fourier transform from the z-transform by making the substitution z = 

e
jω

. This corresponds to restricting |z| = 1. Also, with z = re
jω

 

 

     That is, the z-transform is the Fourier transform of the sequence x[n]r
-n

. For r = 1 this 

becomes the Fourier transform of x[n]. The Fourier transform therefore corresponds to the z-

transform evaluated on the unit circle: 

 

     The inherent periodicity in frequency of the Fourier transform is captured naturally under 

this interpretation. 
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The Fourier transform does not converge for all sequences — the infinite sum may not always 

be finite. Similarly, the z-transform does not converge for all sequences or for all values of z. 

The set of values of z for which the 

z-transform converges is called the region of convergence (ROC). 

     The Fourier transform of x[n] exists if the sum  |x[n]| ∞
𝑛=−∞ converges. However, the z-

transform of x[n] is just the Fourier transform of the sequence 

x[n]r
-n

. The z-transform therefore exists (or converges) if : 

  

 

This leads to the condition 

 

for the existence of the z-transform. The ROC therefore consists of a ring in the z-plane:  

 

     In specific cases the inner radius of this ring may include the origin, and the outer radius 

may extend to infinity. If the ROC includes the unit circle |z| = 1, then the Fourier transform 

will converge. 

Most useful z-transforms can be expressed in the form : 𝑋 𝑍 =
𝑃(𝑍)

𝑄(𝑍)
 

      where P (z) and Q(z) are polynomials in z. The values of z for which P (z) = 0 are called 

the zeros of X(z), and the values with Q(z) = 0 are called the poles. The zeros and poles 

completely specify X(z) to within a multiplicative constant. 

Example: right-sided exponential sequence 

Consider the signal x[n] = a
n
u[n]. This has the z-transform 
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Convergence requires that : 

  

which is only the case if |az
-1

| < 1, or equivalently |z| > |a|. In the ROC, the series converges 

to: 

  

     

  since it is just a geometric series. The z-transform has a region of convergence for any finite 

value of a. 

 

     The Fourier transform of x[n] only exists if the ROC includes the unit circle, which 

requires that |a| < 1. On the other hand, if |a| > 1 then the ROC does not include the unit circle, 

and the Fourier transform does not exist. This is consistent with the fact that for these values 

of a the sequence a
n
u[n] is exponentially growing, and the sum therefore does not converge. 

Example: left-sided exponential sequence 

Now consider the sequence x[n] = -a
n
u[-n - 1]. This sequence is left-sided because it is 

nonzero only for n ≤ -1. The z-transform is : 

  

 

 

For |a
-1

z| < 1, or |z| < |a|, the series converges to : 
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     Note that the expression for the z-transform (and the pole zero plot) is exactly the same as 

for the right-handed exponential sequence — only the region of convergence is different. 

Specifying the ROC is therefore critical when dealing with the z-transform. 

Example: sum of two exponentials 

     The signal x[n] = (1/2)
 n

 u[n] + (-1/ 3) 
n
 u[n] is the sum of two real exponentials. The z-

transform is : 

 

     From the example for the right-handed exponential sequence, the first term in this sum 

converges for |z| > 1/2, and the second for |z| > 1/3. The combined transform X(z) therefore 

converges in the intersection of these regions, namely when |z| > 1/2. In this case : 

 

 

The pole-zero plot and region of convergence of the signal is : 
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Example: finite length sequence 

The signal :  

 

 

has z-transform : 

  

 

 

     Since there are only a finite number of nonzero terms the sum always converges when az
-1

 

is finite. There are no restrictions on a (|a| < ∞), and the ROC is the entire z-plane with the 

exception of the origin z = 0 (where the terms in the sum are infinite). The N roots of the 

numerator polynomial are at : 

                            zk = ae 
j(2πk/N)

,     k =0, 1, . . . , N - 1. 

     since these values satisfy the equation z
N
 = a

N
 . The zero at k = 0 cancels the pole at z = a, 

so there are no poles except at the origin, and the zeros are at : 

                              zk = ae 
j(2πk/N)

,     k = 1, . . . , N - 1. 

1. Properties of the region of convergence 

      The properties of the ROC depend on the nature of the signal. Assuming that the signal 

has a finite amplitude and that the z-transform is a rational function: 

• The ROC is a ring or disk in the z-plane, centered on the origin (0 ≤ rR < |z| < rL ≤ ∞). 

• The Fourier transform of x[n] converges absolutely if and only if the ROC 

of the z-transform includes the unit circle. 



63 
 

• The ROC cannot contain any poles. 

• If x[n] is finite duration (ie. zero except on finite interval -∞ < N1 ≤ n ≤ N2 < ∞), then the 

ROC is the entire z-plane except perhaps at z = 0 or z = ∞. 

• If x[n] is a right-sided sequence then the ROC extends outward from the outermost finite 

pole to infinity. 

• If x[n] is left-sided then the ROC extends inward from the innermost nonzero pole to z = 0. 

• A two-sided sequence (neither left nor right-sided) has a ROC consisting of a ring in the z-

plane, bounded on the interior and exterior by a pole (and not containing any poles). 

• The ROC is a connected region. 

4. The inverse z-transform 

     Formally, the inverse z-transform can be performed by evaluating a Cauchy integral. 

However, for discrete LTI systems simpler methods are often sufficient. 

4.1 Inspection method 

     If one is familiar with (or has a table of) common z-transform pairs, the inverse can be 

found by inspection. For example, one can invert the z-transform : 

 

using the z-transform pair : 

 

By inspection we recognise that :  

  

  

Also, if X(z) is a sum of terms then one may be able to do a term-by-term inversion by 

inspection, yielding x[n] as a sum of terms. 

2.2 Partial fraction expansion 

     For any rational function we can obtain a partial fraction expansion, and identify the z-

transform of each term. Assume that X(z) is expressed as a ratio of polynomials in z
-1

: 
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It is always possible to factor X(z) as : 

 

where the ck’s and dk’s are the nonzero zeros and poles of X(z). 

• If M < N and the poles are all first order, then X(z) can be expressed as : 

  

 

In this case the coefficients Ak are given by : 

  

• If M ≥ N and the poles are all first order, then an expansion of the form : 

  

 

     can be used, and the Br’s be obtained by long division of the numerator by the 

denominator. The Ak’s can be obtained using the same equation as for M < N. 

• The most general form for the partial fraction expansion, which can also deal with multiple-

order poles, is : 

 

  

     Ways of finding the Cm’s can be found in most standard DSP texts. The terms Brz
-r
 

correspond to shifted and scaled impulse sequences, and invert to terms of the form Brδ[n - r]. 

The fractional terms : 

 

     correspond to exponential sequences. For these terms the ROC properties must be used to 

decide whether the sequences are left-sided or right-sided. 

Example: inverse by partial fractions Consider the sequence x[n] with z-transform  
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Since M = N = 2 this can be expressed as : 

 

The value B0 can be found by long division: 

 

The coefficients A1 and A2 can be found using : 

 

Therefore : 

 

     Using the fact that the ROC is |z| > 1, the terms can be inverted one at a time by 

inspection to give : 

                                 x[n] = 2δ[n] - 9(1/2)
n
u[n] + 8u[n]. 

2.3 Power series expansion 

    If the z-transform is given as a power series in the form : 
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then any value in the sequence can be found by identifying the coefficient of the appropriate 

power of z
-1

. 

Example: finite-length sequence 

The z-transform : 

                    X(z) = z
2
(1 – 1/2z

-1
)(1 + z-1)(1 - z

-1
) 

can be multiplied out to give : 

                      X(z) = z
2
 – 1/2z - 1 +1/ 2z

-1
. 

By inspection, the corresponding sequence is therefore : 

 

or equivalently : 

                       x[n] = 1δ[n + 2] - 1 /2δ[n + 1] - 1δ[n] + 1/ 2δ[n - 1]. 

Example: power series expansion 

Consider the z-transform : 

 

Using the power series expansion for log(1 + x), with |x| < 1, gives : 

 

 

The corresponding sequence is therefore 

  

 

Example: power series expansion by long division 

     Consider the transform : 
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     Since the ROC is the exterior of a circle, the sequence is right-sided. We therefore divide 

to get a power series in powers of z
-1

: 

 

Or :      

 

Therefore x[n] = a
n
u[n]. 

Example: power series expansion for left-sided sequence 

     Consider instead the z-transform : 

 

     Because of the ROC, the sequence is now a left-sided one. Thus we divide to obtain a 

series in powers of z: 

  

 

 

Thus x[n] = -a
n
u[-n - 1]. 

3. Properties of the z-transform 

     In this section, if X(z) denotes the z-transform of a sequence x[n] and the ROC of X(z) is 

indicated by Rx, then this relationship is indicated as : 

 

  

Furthermore, with regard to nomenclature, we have two sequences such that : 
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3.1. Linearity 

The linearity property is as follows: 

ROC containsRx1 ∩ Rx1. 

3.2. Time shifting 

The time-shifting property is as follows: 

                              ROC = Rx. 

(The ROC may change by the possible addition or deletion of z = 0 or z = ∞.) This is easily 

shown: 

 

 

Example: shifted exponential sequence 

     Consider the z-transform : 

   

 

From the ROC, this is a right-sided sequence. Rewriting,  

 

     The term in brackets corresponds to an exponential sequence (1/4)
n
u[n]. The factor z

-1
 

shifts this sequence one sample to the right. The inverse z-transform is therefore : 

                                      x[n] = (1/4)
n-1

u[n - 1]. 

Note that this result could also have been easily obtained using a partial fraction expansion. 

3.3 Multiplication by an exponential sequence 

The exponential multiplication property is : 
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     where the notation |z0|Rx indicates that the ROC is scaled by |z0| (that is, inner and outer 

radii of the ROC scale by |z0|). All pole-zero locations are similarly scaled by a factor z0: if 

X(z) had a pole at z = z1, then X(z/z0) will have a pole at z = z0z1. 

• If z0 is positive and real, this operation can be interpreted as a shrinking or expanding of the 

z-plane — poles and zeros change along radial lines in the z-plane. 

• If z0 is complex with unit magnitude (z0 = e
jω0

) then the scaling operation corresponds to a 

rotation in the z-plane by and angle ω0. That is, the poles and zeros rotate along circles 

centered on the origin. This can be interpreted as a shift in the frequency domain, associated 

with modulation in the time domain by e
jω0n

. If the Fourier transform exists, this becomes : 

  

Example: exponential multiplication 

     The z-transform pair : 

 

Can be used to determine the z-transform of x[n] = rn cos(ω0n)u[n]. Since :  

cos(ω0n) = 1/2e
jω0n

 + 1/2e
-jω0n

, the signal can be rewritten as : 

                         x[n] = 1/2(re
jω0

)
n
u[n] + 1/ 2(re

-jω0
)
n
u[n]. 

From the exponential multiplication property, 

 

3.4 Differentiation 

The differentiation property states that : 

  

This can be seen as follows: since : 
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we have : 

  

Example: second order pole 

The z-transform of the sequence : 

                                     x[n] = na
n
u[n] 

can be found using : 

   

To be : 

                      

3.5. Conjugation 

This property is : 

 

3.6. Time reversal 

Here : 

 

     The notation 1/Rx means that the ROC is inverted, so if Rx is the set of values such that  

rR < |z| < rL, then the ROC is the set of values of z such that 1/rl < |z| < 1/rR. 

Example: time-reversed exponential sequence 

The signal x[n] = a
-n

u[-n] is a time-reversed version of a
n
u[n]. The z-transform is therefore : 

 

3.7. Convolution 

     This property states that : 
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Example: evaluating a convolution using the z-transform  

The z-transforms of the signals x1[n] = anu[n] and x2[n] = u[n] are : 

 

For |a| < 1, the z-transform of the convolution y[n] = x1[n] ∗ x2[n] is :  

  

 

Using a partial fraction expansion, 

 

3.8. Initial value theorem 

If x[n] is zero for n < 0, then : 
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Some common z-transform pairs are: 

 

3.9. Relationship with the Laplace transform 

     Continuous-time systems and signals are usually described by the Laplace transform. 

Letting z = esT , where s is the complex Laplace variable 

                                            s = d + jω, 

we have : 

                                           z = e
(d+jω)T

 = e
dT

 e
jωT

 . 

Therefore : 

                                          |z| = e
dT

 and ∢z = ωT = 2πf /fs = 2πω/ωs, 

     where ωs is the sampling frequency. As ω varies from ∞ to ∞, the s-plane is mapped to the 

z-plane: 

• The jω axis in the s-plane is mapped to the unit circle in the z-plane. 

• The left-hand s-plane is mapped to the inside of the unit circle. 

• The right-hand s-plane maps to the outside of the unit circle. 
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CHAPITRE V 

Convolution product and signal correlation 

 

Introduction 

       Signal processing is a growing discipline, it consists of a set of theories and methods, 

relatively independent of the signal processed, allowing the creation, analysis, modification, 

classification and finally recognition of signals. Its applications are numerous in fields as 

varied as telecommunications, sound processing, speech processing, radar, sonar, biomedical, 

imaging, etc. Generally speaking in the fields of electronics and IT. 

In this chapter, we first present the main definitions and generalities concerning convolution 

and correlation as two signal processing techniques which are particularly described. Their 

developments and implementation represent the bulk of this chapter. 

1. Convolution Product 

1.1. Convolution product formulation 

The convolution product has very important properties. The convolution product is an 

operation which associates two functions  h And  e of the same variable, a functions of the 

same variable on the same infinite domain. Functions can take complex values and we note 

s=h*e. By choosing t as a common variable, the operation is defined by: 

                          (5.1) 

     In mathematics, the convolution product is a bilinear operator and a commutative product, 

denoted by "*", which has two functions f And g on the same infinite domain, corresponds to 

another function  f * g  on this domain, which at every point of it is equal to the integral over 

the entire domain (or the sum if it is discrete) of one of the two functions around this point, 

weighted by the other function around the origin; the two functions being traversed in 

opposite directions to each other (necessary to guarantee commutativity). 

     The convolution product generalizes the idea of a rolling average and is the representation 
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mathematics of the notion of linear filter. It applies both to temporal data (in signal processing 

for example) and to spatial data (in image processing). In statistics, we use a very similar 

formula to define cross-correlation. 

1.1.1. Definition of convolution product 

Context :Consider a Linear and Time Invariant system (SLIT) defined by its response to a 

Dirac impulse, h(t). 

 

 

Objective :Determine the output signal when applying a signal x(t) entrance. 

Solution :It is possible to demonstrate that the operation performed by the system is a 

convolution product. 

     The convolution product of two real or complex functions f and g, is another function, 

which is generally noted f * g, and which is defined by: 

 

 𝜏 ∶ is the dummy variable of the convolution product. 

     We can consider this formula as a generalization of the idea of a moving average. 

For this definition to have meaning, it is necessary that f And g satisfy certain assumptions; 

for example, if these two functions are integrable in the Lebesgue sense (i.e. the integral of 

their module is finite), their convolution product is defined for almost all tand is itself 

integrable. 

Example : 

     Either x(t) =y(t) = Π 1 is two width door functions L=1. The convolution product expressed 

in the form: 
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Finally using the previous equations, we find: 

  

 

1.2. Properties of the convolution product: 

Commutativity : f * g =g * f 

Distributivity : (f * (h+ g)) (t) = (f * h)(t)+ (f * g)(t) 

Associativity : ((f * h) * g)) (t) = ((f *( h* g))(t) 

Provided with a neutral element equal to δ: f *  δ = f 

Integration of a convolution product:   𝑓 ∗ 𝑔 (𝑡)𝑑𝑡
+∞

−∞
= ( 𝑓(𝑡)𝑑𝑡)

+∞

−∞
. ( 𝑔(𝑡)𝑑𝑡

+∞

−∞
 

Derivation : (f * g)'=f '*g = f * g ' 

Parity of the convolution of two even functions: (f * g) (t) = (f * g) (-t) 

Convolution product and Fourier transform:  

𝐹 𝑓 ∗ 𝑔 = 𝐹  𝑓 . 𝐹 𝑔 ; 𝑓 ∗ 𝑔 = 𝐹−1(𝐹  𝑓 . 𝐹 𝑔 ) 

 

1.3. Convolution product and Dirac momentum 

     The fact that the Dirac function is the neutral element of the convolution product induces 

an interesting property concerning the product of a continuous function f(t) by a Dirac comb 

δTe(t). The convolution product in this case is defined by:  

                              (5.2) 
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     Thus, the convolution product of f(t) by δTe (t) gives a periodic function which is obtained 

by summing, over all possible values of n, the function f(t) shifted by  nTe, and multiplying the 

result by Te. This operation is sometimes said to ―periodize‖ f(t). 

1.4. Deconvolution 

     Deconvolution is an algorithmic process intended to reverse the effects of convolution. 

The concept of deconvolution is widely used in signal processing and image processing, 

particularly in microscopy and astronomy. 

The problem is to determine the solution f of an equation of the form: f * g = h 

      We denote here by h a signal as it is acquired and f the signal that we wish to estimate or 

restore, but which was convolved by an impulse response g during acquisition. The impulse 

response is often (especially in image processing) also called Point Spread Function (PSF). 

When dealing with a physical acquisition process, the measurement his often marred by 

measurement noise ε : ( f * g ) + ε = h 

     The deconvolution operation will be made more difficult by the presence of ―noise‖. 

Applying the analytical inverse of deconvolution (by convolving with Green's function) will 

give a poor quality result. It is then necessary to include statistical knowledge of the noise and 

the signal to improve the result, for example using ―Wiener filtering‖. 

There are therefore a large number of deconvolution methods in signal processing based on 

different types of priors and therefore adapted to various applications. 

2. Correlation Function  

In signal processing, it is often necessary to compare two signals, this can be done in several 

ways. A possible method, which is widely used, is to shift one of the signals (stationary and 

ergodic) relative to the other, and to measure their similarity as a function of the shift. This is 

the correlation function (FAC). 

We distinguish between auto-correlation (FAC) and inter-correlation (FIC): 

- FAC consists of comparing a functionS(t) with itself, during an interval of time, one of 

which is shifted by a certain value τ. 
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- FIC sometimes replaced by mutual correlation or cross correlation (in English: Cross 

correlation) consists of comparing two different functions S(t) And Y(t) one of which is 

shifted of a certain valueτ. 

We can list the different steps and operations involved in the calculation of a correlation 

function as follows: 

- One of the signals is shifted by a certain quantity τ. 

- The product of the two signals is carried out sample by sample for all values of the 

correlation function. 

- The values thus obtained are added to obtain a value of the correlation function. 

2.1. Autocorrelation function 

     EitherS(t) a real, stationary and ergodic random process; we distinguish :  

2.1.1. Statistical autocorrelation function 

     The statistical FAC is defined as the mathematical expectation of the product of S(t) And 

S(t+ τ): 

                          ΓSS(τ) = Ε[S(t)S(t+ τ)]                                                                                  (5.3) 

 

2.1.2. Temporal autocorrelation function 

     The temporal FAC of a finite power signal is given by the time average value of the 

product of S(t) by S(t+ τ) : 

                              (5.4) 

Generally speaking, FAC is defined as follows: 

 

(5.5) 

 

     This formula reflects the fact that in the case of a stationary process, the statistical FAC is 

equal to the temporal FAC (this is the case of ergodicity). 
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2.1.3. Properties of the autocorrelation function 

1. The FAC of real signals is also real. 

2. According to second-order stationarity, the FAC of real signals is even and depends only 

on τ : 

          Ε[S(t)S(t - τ)] = Ε[S(t)S(t + τ)]                                                                       (5.6) 

Where :  

                       ΓSS (τ) = ΓSS(-τ)                                                                                             (5.7) 
 

     We notice that the autocorrelation function is also symmetric. 

3. When the FAC is complex, the real part of the FAC is an even function, while the 

imaginary part is an odd function 

4. The FAC is defined by the dot product as follows: 

                                                           (5.8) 

5. The FAC of a stationary process reaches its maximum at τ = 0, with a value always real and 

non-negative, this value is the upper limit in modulus of the FAC. 

     According to SCHWARZ, we obtain the following inequality : 

 ΓSS (τ ) 2 ≤ ΓSS (0)            ∀t                                                                  (5.9) 

This value is equal to the signal energy : 

                                   (5.10) 

6. The FAC of periodic or continuous signals, is also a periodic function of the same period or 

continuous. 

7. In case the function S(t) is composed by the sum of two functions U(t) And V(t),there FAC 

of S(t) is defined by the following relation: 

                                  ΓSS (τ) = ΓUU (τ) + ΓVV (τ) + ΓUV (τ) + ΓVU (τ)                            (5.11) 

8. If S(t) is the product of two functions U(t) And V(t) real and independent, the FAC  is 

equal to the product of the FACs of the two functions : 

                                              ΓSS (τ) = ΓUU (τ).ΓVV (τ)                                                           (5.12) 
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9. The FAC of a random signal tends to zero when the offset τ increases indefinitely in 

absolute value. 
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CHAPITER VI 

Random Processes 

 

Introduction 

 In signal theory, we most often study quantities that depend on time and whose evolution 

seems unpredictable. The study of the sound emitted by vehicles passing on a road gives us a 

concrete and familiar image of such magnitude (whereas the roll of a die is a static motion 

independent of time). To model them, we use the notion of the random process which 

associates with each test an achievement which is no longer a value as in the case of random 

variables, but a function of time. 

We define a random process (PA) as an application which, at each test 𝜔, matches a function 

of time 𝑡. We use the notation 𝑋 𝑡, 𝜉  or more usually 𝑋(𝑡)in which we omit the statistical 

dependence on the test 𝜉. 

Example of random process 

 

A process can then be seen: 

Or, for a fixed test 𝜉0, 𝑋 𝑡, 𝜉0 as a function of time which we call trajectory 

Or, for a fixed instant 𝑡0, 𝑋 𝑡0, 𝜉 like a random variable and 𝑥(𝑡0)becomes a particular value 

of the va𝑋 
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Example 2.1 

Consider the random process 𝑋 𝑡 = 𝐴𝑐𝑜𝑠 𝜔𝑡 + Θ , where Θis a uniformly distributed va 

between 0 and 2𝜋, as is illustrated in Figure 2.1. SO 

𝑓Θ 𝜃 =   
1

2𝜋
,     0 ≤ 𝜃 ≤ 2𝜋

0,     𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

Such a random process, whose future values are predictive from previous values, is called 

predictive. Indeed, by setting the value of Θ, to 𝜋/4for example, the function 

𝑋(𝑡, 𝜉𝑘)becomes a deterministic function of time, then 

𝑥𝑘 𝑡 = 𝐴𝑐𝑜𝑠  𝜔𝑡 + (
𝜋

4
)  

 

Continuous-time (TC) and discrete-time (TD) random processes 

A random process is continuous time (TC), if the time𝑡 ∈ 𝑹 ( 𝑡 𝑟é𝑒𝑙) 

A random process is discrete time (TD), if the time𝑡 𝜖 𝒁 ( 𝑡 entire) 
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In general, we are interested in four types of random processes, depending on the 

characteristics of time 𝑡and flow 𝑋 𝑡 = 𝑋 𝑎𝑢 𝑡𝑒𝑚𝑝𝑠 𝑡. We will therefore have 

1  Continuous state (test) and continuous time : in this case, 𝑋(𝑡)and 𝑡both are continuous. 

𝑋(𝑡)is called a continuous random process as shown in Figure 3.2 

 

2  Discrete state and continuous time. 𝑋(𝑡)assumes a set of discrete values, while time 𝑡is 

continuous. Such a process is considered a discrete random process. Figure 3.3 illustrates this 

process 

 

3  Continuous state and discrete time. 𝑋(𝑡)takes continuous values, while time is a set of 

discrete values, as shown in Figure 3.4. Such a process is called a continuous random 

sequence. 

 

4  Discrete state and discrete time. 𝑋 𝑡  𝑒𝑡 𝑡 are both considered a set of discrete values. 

Such a process is considered a discrete random sequence. Figure 3.5 illustrates this process. 
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By fixing the time 𝑡, the random process 𝑋(𝑡)becomes a va. In this case, the techniques we 

use with random variables are valid. Consequently, we can characterize the random process 

by the distribution of order 1 (the distribution function: cumulative density function): 

𝐹𝑋 𝑥; 𝑡  = 𝑃 𝑋 𝑡0 ≤ 𝑥  

1
st 

order
 
density function : 

𝑓𝑋 𝑥; 𝑡  =  
𝑑

𝑑𝑥
𝐹𝑋(𝑥; 𝑡 ) 

For all values of𝑡 

2
nd 

order
 
distribution function is the joint distribution of two random variables 𝑋(𝑡1)and 

𝑋(𝑡2)for each 𝑡1and 𝑡1. SO : 

𝐹𝑋 𝑥1, 𝑥2; 𝑡1, 𝑡2 = 𝑃 𝑋 𝑡1 ≤ 𝑥1  𝑒𝑡  𝑋 𝑡2 ≤ 𝑥2   

2nd 
order density function is: 

𝑓𝑋 𝑥1, 𝑥2; 𝑡1, 𝑡2 =  
𝜕2

𝜕𝑥1𝜕𝑥2
𝐹𝑋 𝑥1, 𝑥2; 𝑡1, 𝑡2  

Normally, the complete probabilistic description of any random process requires knowledge 

of the distributions from the 1st 
to 

the nth 
order 

, given by: 

𝐹𝑋1 ,𝑋2 ,….,𝑋𝑛
 𝑥1, 𝑥2, … . , 𝑥𝑛 ; 𝑡1, 𝑡2, … , 𝑡𝑛 = 𝑃 𝑋 𝑡1 ≤ 𝑥1 , 𝑋 𝑡2 ≤ 𝑥2 , … , 𝑋 𝑡𝑛 ≤ 𝑥𝑛    

nth order 
density function is: 

𝑓𝑋1 ,𝑋2 ,….,𝑋𝑛
 𝑥1, 𝑥2, … . , 𝑥𝑛 ; 𝑡1, 𝑡2, … , 𝑡𝑛 =  

𝜕𝑛𝐹𝑋1 ,𝑋2 ,….,𝑋𝑛
 𝑥1, 𝑥2, … . , 𝑥𝑛 ; 𝑡1, 𝑡2 , … , 𝑡𝑛 

𝜕𝑥1𝜕𝑥2  …  𝜕𝑥𝑛
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Expectations  

In many situations, only 1st and 2nd order statistics may be necessary to characterize a 

random process. Given a real random process 𝑋(𝑡) : 

Average𝒎𝒙(𝒕)  

𝑚𝑥 𝑡 =  𝐸 𝑋(𝑡) =   𝑥𝑓𝑋 𝑥; 𝑡 𝑑𝑥

+∞

−∞

 

It is the statistical average, the mathematical expectation or even moment of order 1 of 𝑋(𝑡). 

This quantity is deterministic and depends on𝑡 

Autocorrelation function 𝑹𝒙𝒙(𝒕𝟏, 𝒕𝟐): also called autocovariance if the process is stationary 

and centered, 

𝑅𝑥𝑥  𝑡1, 𝑡2 = 𝐸 𝑋 𝑡1 𝑋(𝑡2) =    𝑥1𝑥2𝑓𝑋1𝑋2
 𝑥1, 𝑥2; 𝑡1, 𝑡2 𝑑𝑥1𝑑𝑥2

+∞

−∞

+∞

−∞

 

Stationarity in the wide sense of the processes at TC and TD 

Rating : if the process is at TC , 𝑡, 𝜏, 𝑡1, 𝑡2 𝜖 ℝ, if the rpoprocess is at TD , 𝑡, 𝜏, 𝑡1, 𝑡2 𝜖 ℤ. 

When the autocorrelation function 𝑅𝑥𝑥  𝑡1, 𝑡2 only depends on the difference  𝑡1 − 𝑡2 , and 

the mean 𝑚𝑥(𝑡)is constant, we say that the random process is stationary in the broad sense 

(SSL), that is to say the process verifies the following two properties: 

1. The average of the random process is independent of time (constant), 

    𝐸 𝑋(𝑡) = 𝑚𝑥 𝑡 = 𝑚𝑥   

2. The aucorrelation function only depends on 𝜏. In this case, 𝑅𝑥𝑥  𝑡1, 𝑡2 is written based 

on a single argument 𝜏 =  𝑡1 − 𝑡2. If 𝑡2 = 𝑡and 𝑡1 = 𝑡 + 𝜏, 

𝑅𝑥𝑥  𝑡 + 𝜏, 𝑡  =  𝑅𝑥𝑥 (𝜏) 

Stationarity in the strict sense or strictly stationary (strictly stationary or stationnary in 

the strict sense) 

A random process is strictly stationary if its statistics are invariant with respect to time or a 

time shift (a time shift in the time origin). A strictly stationary process is also stationary in the 

broad sense (SSL). The opposite is not true. 
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Example 2.2 

Check whether the random process of Example 2.1 is stationary in the broad sense. 

Solution 

For a random process to be stationary in the broad sense, it must satisfy two conditions: 

1. 𝐸 𝑋(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒. 

2. 𝑅𝑥𝑥  𝑡 + 𝜏 =  𝑅𝑥𝑥 (𝜏). 

To calculate the average of 𝑋(𝑡), we use the concept of a function of a va 

𝐸 𝑔(Θ) =   𝑔 𝜃 

+∞

−∞

𝑓Θ(𝜃)𝑑𝜃 

Such that, in this case 𝑔 𝜃 = 𝐴 ∙ 𝑐𝑜𝑠 𝜔𝑡 + 𝜃 and 𝑓Θ 𝜃 =  
1

2𝜋
in the interval from 0to2𝜋 

𝐸 𝑋(𝑡) =   𝐴𝑐𝑜𝑠 𝜔𝑡 + 𝜃 
1

2𝜋
𝑑𝜃 = 0

2𝜋

0

 

The autocorrelation function is: 

𝐸 𝑋 𝑡 + 𝜏, 𝑡 𝑋(𝑡) = 𝐸 𝐴𝑐𝑜𝑠 𝜔 𝑡 + 𝜏 + 𝜃 𝐴𝑐𝑜𝑠 𝜔𝑡 + 𝜃   

                                       =  
𝐴2

2
𝐸 cos 𝜔𝜏 + cos(2𝜔𝑡 + 𝜔𝜏 + 2𝜃)  

Where we used the trigonometric relationship: 

cos 𝑎 cos 𝑏 =  
1

2
 cos 𝑎 − 𝑏 + cos(𝑎 + 𝑏)  

The second term is evaluated at zero. So the autocorrelation function is: 

𝑅𝑥𝑥  𝑡 + 𝜏, 𝑡 =  
𝐴2

2
𝑐𝑜𝑠𝜔𝜏 =  𝑅𝑥𝑥  𝜏  

Since the mean is constant and the autocorrelation function depends only on 𝜏, 𝑋(𝑡)is a wide-

sense stationary process. 
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In the case of two va 𝑋(𝑡)and 𝑌(𝑡), we say that they are jointly wide-sense stationary in the 

broad sense if each process is stationary in the broad sense, and 

𝑅𝑥𝑦  𝑡 + 𝜏, 𝑡 =  𝐸 𝑋 𝑡 + 𝜏 𝑌(𝑡) =  𝑅𝑥𝑦 (𝜏) 

As 𝑅𝑥𝑦 (𝑡1, 𝑡2)represented by the cross-correlation function. We also define the 

autocovariance function (the autocovariance function) 𝐶𝑥𝑥  𝑡1, 𝑡2 and the intercorrelation 

function (the cross-covariance function) 𝐶𝑥𝑦  𝑡1, 𝑡2  between 𝑋(𝑡)and 𝑌(𝑡)as follows: 

𝐶𝑥𝑥  𝑡1, 𝑡2 =  𝐸  𝑋 𝑡1 − 𝑚𝑥(𝑡1)  𝑋 𝑡2 − 𝑚𝑥(𝑡2)   

= 𝐸 𝑋 𝑡1 𝑋(𝑡2) −  𝑚𝑥(𝑡1)𝑚𝑥(𝑡2) 

And 

𝐶𝑥𝑦  𝑡1, 𝑡2 =  𝐸  𝑋 𝑡1 − 𝑚𝑥(𝑡1)  𝑌 𝑡2 − 𝑚𝑦(𝑡2)   

Special cases 

 If the process is stationary in the broad sense (SSL) , the autocovariance will be 

𝐶𝑥𝑥  𝑡1, 𝑡2 = 𝐶𝑥𝑥  𝜏  = 𝐸 𝑋0 𝑡 + 𝜏 𝑋0 𝑡  =   𝐸 𝑋 𝑡 + 𝜏 𝑋 𝑡  − 𝑚𝑥
2 

with 

𝑋0 𝑡 + 𝜏 =  𝑋 𝑡 + 𝜏 − 𝑚𝑥(𝑡 + 𝜏)  

 If, moreover, the process is centered 𝑚𝑥 = 0, the autocovariance function merges with 

the autocorrelation function 

𝐶𝑥𝑥  𝜏 =  𝐸 𝑋 𝑡 + 𝜏 𝑋 𝑡  =  𝑅𝑥𝑥 (𝜏) 

We also have : 

𝐶𝑥𝑥  𝜏 =  𝐸 𝑋0 𝑡 𝑋0 𝑡 − 𝜏     

And 

𝐶𝑥𝑥  −𝜏 =  𝐸 𝑋0 𝑡 𝑋0 𝑡 + 𝜏  = 𝐶𝑥𝑥  𝜏 , 𝑪𝒙𝒙 𝝉 is even 
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Noticed 

The autocovariance of a strictly stationary random process 𝑋(𝑡)depends only on the 

difference 𝑡1 − 𝑡2. The equation (of the autocovariance) also shows that if we know the mean 

and the autocorrelation function of a random process, we can only determine its 

autocovariance function. The mean and the autocorrelation function are then sufficient to 

describe the first two moments of the process. 

However, two important points should be noted: 

1. The mean and the autocorrelation function provide only a partial description of the 

process distribution𝑋(𝑡) 

2. The conditions on the mean and on the autocorrelation function are not sufficient to 

guarantee whether the process 𝑋(𝑡)is strictly stationary. 

We limit ourselves to stationary 2nd order processes 
in 

the broad sense (SSL) (the most 

common case). 

The class of random processes which satisfy the two stationarity conditions are rather called 

―second order stationaries‖ or even ―stationary in the broad sense‖. a stationary process is not 

necessarily strictly stationary, because the two conditions do not imply time invariance of the 

joint distribution (of dimension k) 

Complex Random Process 

If 𝑍(𝑡)is a complex random process such that 𝑍 𝑡 = 𝑋 𝑡 + 𝑗𝑌(𝑡) 

The autocorrelation and autocovariance functions are 

𝑅𝑧𝑧  𝑡1, 𝑡2 =  𝐸 𝑍 𝑡1 𝑍
∗(𝑡2)  

And 

𝐶𝑧𝑧  𝑡1, 𝑡2 = 𝐸  𝑍 𝑡1 − 𝑚𝑧(𝑡1)  𝑍 𝑡2 − 𝑚𝑧(𝑡2) ∗  

Or∗ denotes the complex conjugate and 𝑚𝑧(𝑡)the mean of 𝑍(𝑡). 

The cross-correlation and the cross-covariance functions between the complex random 

process 𝑍(𝑡)and another complex random process 𝑊(𝑡), 𝑊 𝑡 = 𝑈 𝑡 + 𝑗𝑉(𝑡), are 

𝑅𝑧𝑤  𝑡1, 𝑡2 = 𝐸 𝑍 𝑡1 𝑊
∗(𝑡2)  
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And 

𝐶𝑧𝑤  𝑡1, 𝑡2 =  𝐸  𝑍 𝑡1 − 𝑚𝑧(𝑡1)  𝑊 𝑡2 − 𝑚𝑤(𝑡2) ∗  

Example 2.3 

Let 𝐼(𝑡)and 𝑄(𝑡)two random processes such that 

𝐼 𝑡 = 𝑋 cos 𝜔𝑡 +  𝑌 sin 𝜔𝑡And𝑄 𝑡 = 𝑌 cos 𝜔𝑡 −  𝑋 sin 𝜔𝑡 

where 𝑋and 𝑌are two uncorrelated random variables with zero mean. The values of the square 

means of 𝑋and 𝑌are 𝐸 𝑋2 =  𝐸 𝑌2 =  𝜍2. Give the intercorrelation function𝑅𝑖𝑞  

Solution 

𝑅𝑖𝑞  𝑡 + 𝜏, 𝑡 = 𝐸 𝐼 𝑡 + 𝜏 𝑄(𝑡)   

= 𝐸  𝑋 cos 𝜔𝑡 + 𝜔𝜏 + 𝑌 sin(𝜔𝑡 + 𝜔𝜏  𝑌 cos 𝜔𝑡 −  𝑋 sin 𝜔𝑡   

= 𝐸 𝑋𝑌 cos 𝜔𝑡 + 𝜔𝜏 cos 𝜔𝑡 –𝐸 𝑋2 𝑐𝑜𝑠 𝜔𝑡 + 𝜔𝜏 sin 𝜔𝑡 + 𝐸 𝑌2 𝑠𝑖𝑛 𝜔𝑡 + 𝜔𝜏 cos 𝜔𝑡   

−𝐸 𝑋𝑌 sin 𝜔𝑡 + 𝜔𝜏 sin 𝜔𝑡  

Using trigonometric relations and as long as 𝑋and 𝑌are uncorrelated and have zero means ( 

𝐸 𝑋𝑌 =  𝐸 𝑋 =  𝐸 𝑌 = 0), we find: 

𝑅𝑖𝑞  𝑡 + 𝜏, 𝑡 =  −𝜍2 sin 𝜔𝜏 

Example 2.3' 

Consider 𝑁(𝑡)a random process defined as follows: 

𝑁 𝑡 =  𝑈 ∙ 𝑒𝑥𝑝 − 𝑡  +  𝑉 

Or 𝑈   𝑒𝑡  𝑉are two independent random variables with zero mean𝐸 𝑈 = 𝐸 𝑉 = 0  

1. Determine 𝐸[𝑁 𝑡 ] ; calculate 𝐸[𝑁 0 ] and𝐸[𝑁 2 ]  

2. Calculate 𝐸[𝑁2 0 ] and𝐸[𝑁2 2 ]  

3. Determine the autocorrelation function of this process 

4. Is the process stationary 

5. Calculate the correlation coefficient between 𝑁 0 and𝑁 2  
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Solution 

𝐸 𝑁 𝑡   = 𝐸 𝑈 𝑒− 𝑡 +  𝐸 𝑉  

If 𝐸 𝑈 = 𝐸 𝑉 = 0then𝐸 𝑁 𝑡  = 0 

𝐸 𝑁 0  = 𝐸 𝑈 + 𝐸 𝑉   

𝐸 𝑁2 0  = 𝐸  𝑈 + 𝑉 2 = 𝐸 𝑈2 +  𝐸 𝑉2 + 𝐸 𝑈 𝐸 𝑉  

If more 𝜍𝑈
2 =  𝜍𝑉

2 = 1then:𝐸 𝑁2 0  = 2 

𝐸 𝑁2 2  = 𝐸  𝑈𝑒−2 + 𝑉 2 = 𝐸 𝑈2 𝑒−4 +  𝐸 𝑉2 + 𝐸 𝑈 𝐸 𝑉 𝑒−2 

If more 𝜍𝑈
2 =  𝜍𝑉

2 = 1then𝐸 𝑁2 2  = 1 + 𝑒−4 

The autocorrelation function 

𝑅𝑁𝑁 𝑡1, 𝑡2 =  𝐸 𝑁 𝑡1 ∙ 𝑁 𝑡2  = 𝑒− 𝑡1 𝑒− 𝑡1 𝐸 𝑈2 + 𝐸 𝑈 𝐸 𝑉  𝑒− 𝑡1 +  𝑒− 𝑡2  + 𝐸 𝑉2  

If more 𝜍𝑈
2 =  𝜍𝑉

2 = 1then:𝑅𝑁𝑁 𝑡1, 𝑡2 = 𝑒− 𝑡1 𝑒− 𝑡1 + 1 

Since the autocorrelation function 𝑅𝑁𝑁 𝑡1, 𝑡2 depends on time, the process is not stationary. 

The correlation coefficient: 

𝜌𝑁 0,2 =  
𝐸  𝑁 0 − 𝐸(𝑁(0) ∙  𝑁 2 − 𝐸(𝑁(2)  

𝜍𝑁(0)𝜍𝑁(2)
=  

𝐸  𝑈 + 𝑉  𝑈𝑒−2 + 𝑉  

𝜍𝑁(0)𝜍𝑁(2)
 

𝜌𝑁 0,2 =
𝐸 𝑈2 𝑒−2 + 𝐸 𝑈 𝐸 𝑉  1 + 𝑒−2 + 𝐸 𝑉2 

𝜍𝑁(0)𝜍𝑁(2)
 

If more𝜍𝑈
2 =  𝜍𝑉

2 = 1 𝐸 𝑈 = 𝐸 𝑉 = 0SO 

𝜌𝑁 0,2 =
1 + 𝑒−2

 2 1 + 𝑒−4 
 

Properties of the Autocorrelation Function (AFC) 

By notation convention, we recall the autocorrelation function of a stationary random process 

𝑋(𝑡) : 

𝑅𝑥𝑥  𝜏 =  𝐸 𝑋 𝑡 + 𝜏 𝑋(𝑡)       𝑓𝑜𝑟  𝑎𝑙𝑙   𝑡 
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This FAC has several properties: 

The average of the quadratic value of the process can be obtained from 𝑅𝑥𝑥  𝜏 , by setting 

𝜏 = 0, 

𝑅𝑥𝑥  0 =  𝐸 𝑋2(𝑡)    

The autocorrelation function is an even function: 

𝑅𝑥𝑥 𝜏 =  𝑅𝑥𝑥  −𝜏  

We can also define the autocorrelation function 𝑅𝑥𝑥  𝜏 , as follows: 

𝑅𝑥𝑥  𝜏 =  𝐸 𝑋(𝑡)𝑋 𝑡 − 𝜏         

 

Fig. illustration of autocorrelation functions of slowly and rapidly fluctuating random 

processes 

The autocorrelation function is max at the origin ( 𝜏 = 0), that is to say: 

 𝑅𝑥𝑥 (𝜏)  ≤ 𝑅𝑥𝑥 (0) 

To demonstrate this property, consider the following nonnegative quantity: 

𝐸   𝑋(𝑡 + 𝜏) ± 𝑋(𝑡) 2  ≥ 0 

⟹ 𝐸  𝑋2(𝑡 + 𝜏)  ± 2𝐸 𝑋 𝑡 + 𝜏 𝑋(𝑡) +  𝐸 𝑋2(𝑡)  ≥ 0 

⟹ 2𝑅𝑥𝑥  0 ±  2𝑅𝑥𝑥  𝜏 ≥ 0  

We can write 

−𝑅𝑥𝑥  0 ≤ 𝑅𝑥𝑥  𝜏 ≤ 𝑅𝑥𝑥 (0) 

That's to say 

 𝑅𝑥𝑥 (𝜏)  ≤ 𝑅𝑥𝑥 (0) 
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𝑅𝑥𝑥  𝑡2, 𝑡1 =  𝑅𝑥𝑥
∗ (𝑡1, 𝑡2) 

If 𝑋(𝑡)is real, then the autocorrelation function is symmetric in the plane 𝑡1, 𝑡2  

𝑅𝑥𝑥  𝑡2, 𝑡1 = 𝑅𝑥𝑥  𝑡1, 𝑡2  

The value of the root mean square of the random process 𝑋(𝑡)is always positive, then: 

𝑅𝑥𝑥  𝑡1, 𝑡1 = 𝐸 𝑋 𝑡1 𝑋
∗(𝑡1) = 𝐸  𝑋(𝑡) 2  ≥ 0 

If 𝑋(𝑡)is real, the value of the root mean square 𝐸 𝑋2(𝑡) is always non-negative. 

 𝑅𝑥𝑥 (𝑡1, 𝑡2)  ≤  𝑅𝑥𝑥 (𝑡1, 𝑡1)𝑅𝑥𝑥 (𝑡2, 𝑡2) 

This is Schwartz's inequality. It can be written as follows: 

 𝑅𝑥𝑥 (𝑡1, 𝑡2)  2 ≤ 𝐸  𝑋(𝑡1) 2 𝐸  𝑋(𝑡2) 2  

  𝑎𝑖𝑎𝑗
∗𝑅𝑥𝑥 (𝑡𝑖 , 𝑡𝑗 ) ≥ 0

𝑁−1

𝑗 =0

𝑁−1

𝑖=0

 

For any sequence of values 𝑎0, 𝑎2, … , 𝑎𝑁−1and any sequence of instants 𝑡0, 𝑡2, … , 𝑡𝑛−1. Then, 

the autocorrelation is a nonnegative definite function. We can write the positivity property as 

follows: 

𝐴𝑇𝑹𝐴 ≥ 0( 𝐴𝐻𝑹𝐴 ≥ 0in the complex case ), the superscripts T and H indicate transposition 

and transposition-conjugation respectively. 

Example for N=3: 

𝐴𝑇𝑹𝐴 =  𝑎0  𝑎1  𝑎2  

𝑅𝑥𝑥 (0) 𝑅𝑥𝑥 (1) 𝑅𝑥𝑥 (2)

𝑅𝑥𝑥(1) 𝑅𝑥𝑥 (0) 𝑅𝑥𝑥 (1)
𝑅𝑥𝑥 (2) 𝑅𝑥𝑥 (1) 𝑅𝑥𝑥 (0)

  

𝑎0

𝑎1

𝑎2

  ≥ 0 

In the complex case, 

𝐴𝐻𝑹𝐴 =  𝑎0
∗   𝑎1

∗   𝑎2
∗  

𝑅𝑥𝑥 (0) 𝑅𝑥𝑥 (1) 𝑅𝑥𝑥 (2)
𝑅𝑥𝑥 (−1) 𝑅𝑥𝑥 (0) 𝑅𝑥𝑥 (1)
𝑅𝑥𝑥 (−2) 𝑅𝑥𝑥 (−1) 𝑅𝑥𝑥 (0)

  

𝑎0

𝑎1

𝑎2

 ≥ 0  

Due to the staionarity of the random process, the matrix 𝑹is such that the parallels to the main 

diagonal consist of equal terms. This form of matrix is called the Toeplitz matrix. 
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Properties of the Intercorrelation Function (FAC) 

Consider the two random processes 𝑋(𝑡)and Y(t). 

𝑅𝑥𝑦  𝑡1, 𝑡2 =  𝑅𝑦𝑥
∗ (𝑡2, 𝑡1) 

And on the other hand 

𝑅𝑥𝑦  𝑡1, 𝑡2 = 𝐸  𝑋 𝑡1 𝑌(𝑡2)  

𝑅𝑦𝑥  𝑡1, 𝑡2 = 𝐸  𝑌 𝑡1 𝑋(𝑡2)  

In matrix form, we write: 

𝑹 𝑡1, 𝑡2 =   
𝑅𝑥𝑥 (𝑡1, 𝑡2) 𝑅𝑥𝑦 (𝑡1, 𝑡2)

𝑅𝑦𝑥 (𝑡1, 𝑡2) 𝑅𝑦𝑦 (𝑡1, 𝑡2)
  

This matrix is called the correlation matrix. 

If the two processes 𝑋(𝑡)and 𝑌(𝑡)are each stationary, and jointly stationary, then the 

correlation matrix can be written as follows: 

𝑹 𝜏 =   
𝑅𝑥𝑥 (𝜏) 𝑅𝑥𝑦 (𝜏)

𝑅𝑦𝑥 (𝜏) 𝑅𝑦𝑦 (𝜏)
  

Or𝜏 =  𝑡1 − 𝑡2 

If 𝑋(𝑡)and Y(t) are real processes: 

𝑅𝑥𝑦  𝑡1, 𝑡2 =  𝑅𝑦𝑥 (𝑡2, 𝑡1) 

In general, 𝑅𝑥𝑦  𝑡1, 𝑡2 and 𝑅𝑦𝑥 (𝑡2, 𝑡1)are different 

 𝑅𝑥𝑦 (𝑡1, 𝑡2) = 𝐸 𝑋(𝑡1) 𝐸 𝑌(𝑡2)  

≤  𝑅𝑥𝑥 (𝑡1, 𝑡1)𝑅𝑦𝑦 (𝑡2, 𝑡2) =   𝐸 𝑋2(𝑡1) 𝐸 𝑌2(𝑡2)  

𝑿(𝒕)and Y(t) are wide sense staionary (SSL), 

The autocorrelation function is an even function of 𝜏 : 

𝑅𝑥𝑥  𝜏 =  𝑅𝑥𝑥  −𝜏  
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𝑅𝑥𝑥  0 = 𝐸  𝑋 2(𝑡)  

As long as 𝑋(𝑡)it is real: 

𝑅𝑥𝑥  0 = 𝐸 𝑋2(𝑡) = 𝐸 𝑋2(𝑡) − 𝑚𝑥
2 + 𝑚𝑥

2 =  𝜍𝑥
2 + 𝑚𝑥

2   ≥ 0 

Remember that we have the max from 𝑅𝑥𝑥  𝜏 to 𝜏 = 0. The further we move away from the 

origin, the 𝑅𝑥𝑥  𝜏 faster it decreases. Yes 𝜏 ⟶ ∞, the two observations can be uncorrelated. 

In this case, the autocovariance function tends to 0. 

lim
𝜏⟶∞

𝐶𝑥𝑥  𝜏 = 𝐸  𝑋 𝑡 + 𝜏 − 𝑚𝑥  𝑋 𝑡 − 𝑚𝑥  =  𝑅𝑥𝑥  𝜏 −  𝑚𝑥
2 = 0 

Or 

lim
𝜏⟶∞

𝑅𝑥𝑥  𝜏 =   𝑚𝑥  
2 

 

Example of an autocorrelation function 

We obtain the same properties if 𝑋 𝑡 , 𝑌(𝑡)they are jointly stationary in the wide sense, 

𝑅𝑥𝑦
∗  𝜏 =  𝑅𝑥𝑦 (−𝜏) 

 𝑅𝑥𝑦 (𝜏) 
2

≤  𝑅𝑥𝑥 (0)𝑅𝑦𝑦 (0) 

𝑅𝑥𝑦  0 =  𝑅𝑥𝑦
∗ (0) 

 𝑅𝑥𝑦 (𝜏)  ≤  
𝑅𝑥𝑥  0 + 𝑅𝑥𝑦 (0)

2
 

Example 2.4 

Consider a pair of quadrature modulated processes 𝑋1 𝑡 , 𝑋2(𝑡)that are related to the 

stationary process 𝑋(𝑡)  : 
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𝑋1 𝑡 =  𝑋 𝑡 𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 + Θ  

𝑋2 𝑡 =  𝑋 𝑡 𝑠𝑖𝑛 2𝜋𝑓𝑐𝑡 + Θ  

The real example of this process is the generation of double sideband in AM modulation 

(DSB-SC), or we recall the diagram for greater clarity in the presentation: 

 

 

 

 

 

where 𝑓𝑐 is the carrier frequency, and Θis a random variable (va) uniformly distributed over 

the interval  0, 2𝜋 . However, Θis independent of 𝑋(𝑡)  . the intercorrelation of 

𝑋1 𝑡 , 𝑋2(𝑡)is 

𝑅𝑥1𝑥2
 𝜏 =  𝑅12 𝜏 = 𝐸 𝑋1 𝑡 𝑋2(𝑡 − 𝜏)  

= 𝐸 𝑋 𝑡 𝑋(𝑡 − 𝜏)𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 + Θ 𝑠𝑖𝑛 2𝜋𝑓𝑐𝑡 − 2𝜋𝑓𝑐𝜏 + Θ   

=
1

2
𝐸 𝑋 𝑡 𝑋 𝑡 − 𝜏 𝑠𝑖𝑛 4𝜋𝑓𝑐𝑡 − 2𝜋𝑓𝑐𝜏 + 2Θ − 𝑋 𝑡 𝑋 𝑡 − 𝜏 𝑠𝑖𝑛 2𝜋𝑓𝑐𝜏   

=
1

2
𝐸 𝑋 𝑡 𝑋 𝑡 − 𝜏   𝐸 𝑠𝑖𝑛 4𝜋𝑓𝑐𝑡 − 2𝜋𝑓𝑐𝜏 + 2Θ  − 𝐸 𝑠𝑖𝑛 2𝜋𝑓𝑐𝜏    

= −
1

2
𝑅𝑥𝑥 (𝜏)𝐸 𝑠𝑖𝑛 2𝜋𝑓𝑐𝜏   

 𝐸 𝑠𝑖𝑛 4𝜋𝑓𝑐𝑡 − 2𝜋𝑓𝑐𝜏 + 2Θ  =
1

2𝜋
 𝑠𝑖𝑛 4𝜋𝑓𝑐𝑡 − 2𝜋𝑓𝑐𝜏 + 2Θ 𝑑𝜃 = 0

2𝜋

0

  

Note that at 𝜏 = 0,𝑅12 𝜏 = −
1

2
𝑅𝑥𝑥  𝜏 𝐸 𝑠𝑖𝑛 0  = 𝐸 𝑋1 𝑡 𝑋2(𝑡) = 0 

This shows the values obtained by the simultaneous observations 𝑋1 𝑡 , 𝑋2(𝑡)are orthogonal. 

 


 

 tm

 

Modulator 

AM. 

 ts1

 

+ 

 tm

 

Modulator 

AM. 

 ts2

 

Oscillateur 

- 

 ts
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Some random processes 

In this paragraph, we will study certain random processes which can characterize some 

applications. 

A Single Pulse of Known Shape but Random Amplitude and Arrival Time 

In Radar and Sonar applications, the received signal (a return signal) can be characterized as a 

random process "one pulse", but with random amplitude and arrival time. The impulse can be 

expressed by: 

𝑋 𝑡 =  𝐴 𝑆(𝑡 − Θ) 

where 𝐴and Θare statistically independent random variables, and 𝑠(𝑡)is a deterministic 

function. An example of this function is shown in Figure 

 

The average value of particular random process is given by: 

𝐸 𝑋(𝑡) = 𝐸 𝐴 𝑆 𝑡 − Θ   

As long as 𝐴and Θare statistically independent, we will have: 

𝐸 𝑋(𝑡) = 𝐸 𝐴]𝐸[ 𝑆 𝑡 − Θ  = 𝐸 𝐴  𝑠 𝑡 − 𝜃 𝑓Θ 𝜃 𝑑𝜃

+∞

−∞

 

The integral  𝑠 𝑡 − 𝜃 𝑓Θ 𝜃 𝑑𝜃
+∞

−∞
is simply the convolution of the momentum 𝑠(𝑡)with the 

density function of Θ. SO : 

𝐸 𝑋(𝑡) = 𝐸 𝐴 𝑠(𝑡) ∗ 𝑓Θ(𝜃) 

By analogy, 

The autocorrelation function is given by: 
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𝑅𝑥𝑥  𝑡1, 𝑡2 = 𝐸 𝐴2  𝑠 𝑡1 − 𝜃 

+∞

−∞

𝑠 𝑡2 − 𝜃 𝑓Θ 𝜃 𝑑𝜃 

If the arrival time is known with a certain value 𝜃0, then the average and autocorrelation 

functions become 𝑋(𝑡): 

𝐸 𝑋(𝑡) = 𝐸 𝐴] 𝑠 𝑡 − θ0   

And 

𝑅𝑥𝑥  𝑡1, 𝑡2 = 𝐸 𝐴2 𝑠 𝑡1 − 𝜃0 𝑠 𝑡2 − 𝜃0  

Particular case: 

The arrival time can be uniformly distributed over the interval  0, 𝑇 . The mean and 

autocorrelation functions: 

𝐸 𝑋(𝑡) = 𝐸 𝐴 𝐸 𝑆(𝑡 − Θ) =  
𝐸[𝐴]

𝑇
 𝑠 𝑡 − 𝜃 𝑑𝜃

𝑇

0

 

And 

𝑅𝑥𝑥  𝑡1, 𝑡2 =  
𝐸[𝐴]

𝑇
 𝑠 𝑡1 − 𝜃 

𝑇

0

𝑠 𝑡2 − 𝜃 𝑑𝜃 

Gaussian Process 

The random process 𝑋(𝑡)is Gaussian if the random variables 𝑋 𝑡1 , 𝑋 𝑡2 , … , 𝑋 𝑡𝑛 are 

jointly Gaussian for all possible values of 𝑛and 𝑡1, 𝑡2, … , 𝑡𝑛 . As long as the multiple Gaussian 

random variables depend only on the mean vector and the covariance matrix of 𝑛random 

values, we observe that 𝑋(𝑡)stationary in the broad sense (SSL). If 𝑋(𝑡)is a Gaussian random 

process applied to an invariant linear system with an impulse response (𝑡), as shown in 

Figure 2.4, then the random process: 

𝑌 𝑡  =   𝑥 𝑡 − 𝜏  𝜏 𝑑𝜏

+∞∞

−∞
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is also Gaussian. 

 

 

Example 2.5 

Let 𝑋(𝑡)a random SSL process, Gaussian with zero mean, be an input to a quadratic detector 

(a square law detector), a nonlinear system without memory. 

1. Check that the output is no longer Gaussian. 

2. Determine the autocorrelation function 𝑅𝑦𝑦 (𝜏), the output and the variance. 

Solution 

The density function of the input is: 

𝑓𝑋 𝑥; 𝑡 =  𝑓𝑋 𝑥 =  
1

 2𝜋
𝑒−𝑥2/2𝜍2

 

Using the fundamental theorem: 

 

𝑌 =  𝑋2   ⟹ 𝑋 = ± 𝑌, we therefore have two roots:𝑥1 = + 𝑦, 𝑥2 =  − 𝑦 

𝑔′ 𝑥 =  2𝑥 ⟹  𝑔′ 𝑥1 = 2  𝑦  , 𝑔′ 𝑥2 = −2( 𝑦 ) 

SO : 

𝑓𝑌 𝑦 =
𝑓𝑋( 𝑦  )

2 𝑦
+

𝑓𝑋(− 𝑦  )

2 𝑦
 

𝑓𝑌 𝑦; 𝑡 =  𝑓𝑌 𝑦 =   

1

 2𝜋𝑦
𝑒−𝑦/2𝜍2

,         𝑦 ≥ 0

0,                    𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝑋(𝑡) 

Gaussien 

Système linéaire 

(𝑡) 

𝑌(𝑡) 

Gaussien 
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Quadratic detector 

 

We observe that the output of the nonlinear system is no longer Gaussian. 

The autocorrelation function of the output 𝑌 𝑡 =  𝑋2(𝑡)is given by: 

𝑅𝑦𝑦  𝑡 + 𝜏, 𝑡 = 𝐸 𝑌 𝑡 + 𝜏 𝑌(𝑡) = 𝐸 𝑋2 𝑡 + 𝜏 𝑋2(𝑡) = 𝐸  𝑋 𝑡 + 𝜏 𝑋 𝑡 + 𝜏 𝑋 𝑡 𝑋(𝑡)  

𝑅𝑦𝑦  𝜏  = 𝑅𝑥𝑥  0 + 2𝑅𝑥𝑥 (𝜏) 

 

The output density function 

Then, the root mean square value of 𝑌(𝑡)is 

𝐸 𝑌2(𝑡) =  𝑅𝑦𝑦  0 =  3 𝐸 𝑋2(𝑡)  2 = 3 𝑅𝑥𝑥 (0) 2 

But 𝐸 𝑌(𝑡) = 𝐸 𝑋2(𝑡) =  𝑅𝑥𝑥  0 =  𝜍2. So the variance of 𝑌(𝑡)is 

𝜍𝑦
2 = 𝐸 𝑌2(𝑡) −  𝐸[𝑌(𝑡) 2 = 2 𝑅𝑥𝑥 (0) 2 = 2𝜍4 
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Spectral Power Density 

Given a deterministic signal, its Fourier transform (TF) is 

𝑆 𝑓 =   𝑠(𝑡)

+∞

−∞

𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 

The function 𝑆(𝑓)is also called the spectrum of 𝑠(𝑡). Going from the temporal description 

𝑠(𝑡)to the frequency domain 𝑆(𝑓), no information about the signal is lost. In other words, 

𝑆(𝑓)forms a complete description of 𝑠(𝑡)and vice versa. Then 𝑠(𝑡)can be obtained from 

𝑆(𝑓)by calculating the inverse Fourier transform (IFT). SO : 

𝑠 𝑡 =   𝑆(𝑓)𝑒+𝑗2𝜋𝑓𝑡 𝑑𝑓

+∞

−∞

 

We treat random processes in the same way as deterministic signals with infinite energy. We 

define it 𝑥𝑇(𝑡)as the sample function 𝑥(𝑡), transcribed between – 𝑇  𝑒𝑡   𝑇, of the random 

process 𝑋(𝑡). SO : 

𝑥𝑇 𝑡 =  
𝑥 𝑡 ,    − 𝑇 ≤ 𝑡 ≤ 𝑇
0,             𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

The transcribed TF of the random process 𝑋(𝑡)is: 

𝑋𝑇 𝑓 =   𝑥𝑇(𝑡)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

𝑇

−𝑇

=   𝑥 (𝑡)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

+∞

−∞

 

The average power of 𝑥𝑇(𝑡)is 

𝑃𝑎𝑣𝑒 =  
1

2𝑇
 𝑥𝑇

2 𝑡 𝑑𝑡

𝑇

−𝑇

 

Using Parseval's theorem, 

 𝑥2  𝑡 𝑑𝑡 =    𝑋𝑇(𝑓) 2𝑑𝑓

+∞

−∞

+∞

−∞

 

The average power of 𝑥𝑇(𝑡)is 
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𝑃𝑇 =   
 𝑋𝑇(𝑓) 2

2𝑇
𝑑𝑓

+∞

−∞

 

where the term  𝑋𝑇 𝑓  2 ∕ 2𝑇is the spectral power density of 𝑥𝑇(𝑡). The set mean of 𝑃𝑇 is 

given by: 

𝐸 𝑃𝑇 =   𝐸  
 𝑋𝑇(𝑓) 2

2𝑇
 𝑑𝑓

+∞

−∞

 

The spectral power density of the process 𝑋(𝑡)is defined 

𝑆𝑥𝑥  𝑓 =  lim
𝑇⟶∞

𝐸  
 𝑋𝑇(𝑓) 2

2𝑇
  

If 𝑋(𝑡)is SSL, the spectral power density 𝑆𝑥𝑥  𝑓 is the TF of the autocorrelation 𝑅𝑥𝑥 (𝜏). SO : 

𝑆𝑥𝑥  𝑓 =   𝑅𝑥𝑥 (𝜏)𝑒−𝑗2𝜋𝑓𝜏 𝑑𝜏

∞

−∞

 

Then the spectral power density 𝑆𝑥𝑥  𝑓 is the Fourier transform of the autocorrelation function 

𝑅𝑥𝑥 (𝜏). The latter is therefore the inverse transform of the dsp 𝑆𝑥𝑥  𝑓  : 

𝑅𝑥𝑥  𝜏 =   𝑆𝑥𝑥 (𝑓)𝑒+𝑗2𝜋𝑓𝜏 𝑑𝑓

∞

−∞

 

These two relations are called the Wiener-Khinchin relations . Note that the dsp is a function 

of 𝑓real, positive and even. The autocorrelation function is an 𝜏odd function. 

Example 

Consider the random process 𝑋 𝑡 = 𝐴 𝑐𝑜𝑠 𝜔0𝑡 + Θ , where Θis a random variable 

uniformly distributed over the interval  0, 2𝜋 , and 𝐴   𝑒𝑡 𝜔0are constant. Determine the 

power spectral density of this process. 

Solution 

As long as 𝑋 𝑡 it is SSL with an autocorrelation function 𝑅𝑥𝑥  𝜏 =   𝐴2/2  𝑐𝑜𝑠 2𝜋𝑓0𝜏 , 

then: 
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𝑆𝑥𝑥  𝑓 =   𝑅𝑥𝑥 (𝜏)𝑒−𝑗2𝜋𝑓𝜏 𝑑𝜏

∞

−∞

=   
𝐴2

2
 𝑐𝑜𝑠 2𝜋𝑓0𝜏 

+∞

−∞

𝑒−𝑗2𝜋𝑓𝜏 𝑑𝜏

=
𝐴2

4
 𝛿 𝑓 − 𝑓0 + 𝛿 𝑓 + 𝑓0   

Inter Power Spectral Densities 

Let 𝑋(𝑡)and be 𝑌 𝑡 two jointly stationary random processes in the broad sense. Their power 

spectral inter-densities 

𝑆𝑥𝑦  𝑓 =   𝑅𝑥𝑦 (𝜏)𝑒−𝑗2𝜋𝑓𝜏 𝑑𝜏

∞

−∞

 

And 

𝑆𝑦𝑥  𝑓 =   𝑅𝑦𝑥 (𝜏)𝑒−𝑗2𝜋𝑓𝜏 𝑑𝜏

∞

−∞

 

We therefore have, according to the Wiener-Khinchin relations and according to: 

𝑅𝑥𝑦  𝜏 =  𝑅𝑦𝑥
∗  −𝜏  

Therefore : 

𝑆𝑦𝑥  𝑓 = 𝑆𝑥𝑦
∗  𝑓  

Example 

Consider the process 𝑌 𝑡 = 𝑋(𝑡 − 𝑇), where 𝑋(𝑡)is a linear process and SSL with an 

autocorrelation function 𝑅𝑥𝑥 (𝜏)and a power spectral density 𝑆𝑥𝑥 (𝑓). 𝑇is a constant. Express 

the power spectral density 𝑆𝑥𝑦 (𝑓)of the process 𝑌(𝑡)in terms of 𝑆𝑥𝑥 (𝑓). 

Solution 

The inter-correlation function 𝑅𝑥𝑦  𝜏 is given by: 

𝑅𝑥𝑦  𝜏 = 𝐸 𝑋 𝑡 + 𝜏 𝑌 𝑡  = 𝐸 𝑋 𝑡 + 𝜏 𝑋(𝑡 − 𝑇) =  𝑅𝑥𝑥  𝜏 + 𝑇  

SO : 
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𝑆𝑥𝑦  𝑓 =  𝑆𝑥𝑥  𝑓 𝑒𝑗2𝜋𝑓𝑇  

Therefore, the delay time 𝑇appears in the exponent as a phase factored by2𝜋𝑓 

Linear invariant systems 

A linear and time-invariant system is characterized by its impulse response (𝑡), or its 

transfer function 𝐻(𝑓)which is the Fourier transform of (𝑡). SO, 

𝐻 𝑓 =    𝑡 𝑒−𝑗2𝜋𝑓𝑡  𝑑𝑡

+∞

−∞

 

And 

 𝑡  =   𝐻 𝑓 𝑒𝑗2𝜋𝑓𝑡  𝑑𝑓

+∞

−∞

 

if 𝑥(𝑡), the input signal applied to the linear system and invariant with respect to time, is 

deterministic as illustrated in the figure below, the output signal is the convolution of 𝑥(𝑡)and 

(𝑡) : 

 

𝑦 𝑡 =  𝑥 𝑡 ∗  𝑡 =   𝑥 𝑡 − 𝜏  𝜏  𝑑𝜏

+∞

−∞

 

𝑦(𝑡)is a sample function of the random process 𝑌(𝑡)which corresponds to the sample function 

of the input random process 𝑋(𝑡). The expression of the output in the frequency domain is 

then: 

𝑌 𝑓 =  𝑋 𝑓 𝐻(𝑓) 

where 𝑋(𝑓)and 𝑌(𝑓)are the Fourier transforms of 𝑥(𝑡)and 𝑦(𝑡)respectively. The system is 

feasible provided that the impulse response is causal; SO : 

 𝑡 =  0    𝑝𝑜𝑢𝑟    𝑡 < 0. In this case, the convolution integral becomes 

𝑦 𝑡 =   𝑥 𝑡 − 𝜏  𝜏  𝑑𝜏 =   𝑥 𝜏  𝑡 − 𝜏 𝑑𝜏

𝑡

−∞

+∞

0

 

(𝑡) 𝑥(𝑡) 𝑦(𝑡) 
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Stochastic signals 

Consider the time-invariant linear system of the previous Figure. 

𝑌 𝑡 =  𝑡 ∗ 𝑋 𝑡 =  𝑋(𝑡) ∗ (𝑡) 

=   𝑋 𝑡 − 𝛼  𝛼  𝑑𝛼 =   𝑋 𝛼   𝑡 − 𝛼  𝑑𝛼

+∞

−∞

+∞

−∞

 

The average 

The average value of the output process is given by 

𝐸 𝑌(𝑡) =   𝐸 𝑋 𝑡 − 𝛼    𝛼 𝑑𝛼 =   𝑚𝑥 𝑡 − 𝛼   𝛼  𝑑𝛼

+∞

−∞

+∞

−∞

 

where 𝑚𝑥(𝑡)is the process average 𝑋(𝑡). If 𝑋(𝑡)is stationary in the broad sense: 

𝑚𝑥 𝑡 − 𝛼 =  𝑚𝑥 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

So the 𝑚𝑦(𝑡)process average 𝑌(𝑡)is 

𝑚𝑦 𝑡 =  𝐸 𝑌 𝑡  =  𝑚𝑥   𝛼  𝑑𝛼

+∞

−∞

 

We know that  𝛼  𝑑𝛼
+∞

−∞
= 𝐻(0) 

SO : 

𝑚𝑦 𝑡 =  𝐸 𝑌 𝑡  =  𝑚𝑥𝐻(0) 

The Mean Quadratic Value 

𝐸 𝑌2(𝑡) = 𝐸   𝑋 𝑡 − 𝑡1 𝑋 𝑡 − 𝑡2  𝑡1  𝑡2 𝑑𝑡1𝑑𝑡2

∞∞

00

  

 

By simplifying this relationship, we will have: 
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𝐸 𝑌2(𝑡) =   𝑅𝑥𝑥  𝑡 − 𝑡1, 𝑡 − 𝑡2  𝑡1 

∞∞

−∞−∞

 𝑡2 𝑑𝑡1𝑑𝑡2 

𝐸 𝑌2(𝑡) =   𝑅𝑥𝑥  𝑡1, 𝑡2  𝑡 − 𝑡1 

∞∞

−∞−∞

 𝑡 − 𝑡2 𝑑𝑡1𝑑𝑡2 

Assuming that 𝑋(𝑡)is stationary in the broad sense and after a change of variable 

𝛼 = 𝑡 − 𝑡1        𝛽 = 𝑡 − 𝑡2, SO : 

𝐸 𝑌2(𝑡) =   𝑅𝑥𝑥  𝛼 − 𝛽  𝛼 

∞∞

−∞−∞

 𝛽 𝑑𝛼𝑑𝛽 

Which is independent of time 

The Intercorrelation Function Between Input and Output 

We consider that the input process 𝑋(𝑡)is stationary in the broad sense. The intercorrelation 

function between input and output is: 

𝑅𝑦𝑥  𝑡 + 𝜏, 𝑡 = 𝐸 𝑌 𝑡 + 𝜏 𝑋∗(𝑡)  

Using the relationship 𝑌 𝑡 =  𝑋(𝑡) ∗ (𝑡)and after changing variables, the intercorrelation 

function can be written as follows: 

𝑅𝑦𝑥  𝑡 + 𝜏, 𝑡 =   𝑅𝑥𝑥  𝜏 − 𝛼  𝛼 𝑑𝛼 =  𝑅𝑥𝑥  𝜏  ∗  𝜏 

+∞

−∞

 

We see that this result does not depend on 𝑡, and therefore 𝑅𝑦𝑥  𝑡 + 𝜏 =  𝑅𝑦𝑥  𝜏  . we can also 

show that: 

𝑅𝑥𝑦  𝜏 =  𝑅𝑥𝑥  𝜏  ∗  −𝜏  

We directly calculate the power spectral interdensity 𝑆𝑦𝑥  𝑓  : 

𝑆𝑦𝑥  𝑓 =  𝑆𝑥𝑥 (𝑓) ∙ 𝐻(𝑓) 

And 

𝑆𝑥𝑦  𝑓 =  𝑆𝑥𝑥 (𝑓) ∙ 𝐻∗(𝑓) 
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The Autocorrelation Function and the Output Spectrum 

𝑅𝑦𝑦  𝑡 + 𝜏, 𝑡 = 𝐸 𝑌 𝑡 + 𝜏 𝑌(𝑡)  

We have 

𝑌 𝑡 + 𝜏 =   𝑋 𝑡 + 𝜏 − 𝛼  𝛼 

+∞

−∞

𝑑𝛼 

And 

𝑌 𝑡 =   𝑋 𝑡 − 𝛽  𝛽 

+∞

−∞

𝑑𝛽 

By substitution of 𝑌 𝑡 + 𝜏 and 𝑌 𝑡 in 𝑅𝑦𝑦  𝑡 + 𝜏, 𝑡 and by change of variables: 𝛼 =  −𝛽, we 

find: 

𝑅𝑦𝑦  𝜏 = 𝐸   𝑋 𝑡 + 𝜏 − 𝛼  𝛼 𝑋 𝑡 − 𝛽  𝛽 𝑑𝛼𝑑𝛽

∞∞

−∞−∞

  

                                                       =  𝐸 𝑋 𝑡 + 𝜏 − 𝛼 𝑋 𝑡 − 𝛽   𝛼  𝛽 
+∞

−∞
𝑑𝛼𝑑𝛽. 

=  𝑅𝑥𝑥  𝜏 − 𝛼 + 𝛽  𝛼  𝛽 𝑑𝛼𝑑𝛽

+∞

−∞

= 𝑅𝑥𝑥 (𝜏) ∗ (𝜏) ∗ (−𝜏) 

 

𝑅𝑦𝑦  𝜏 =  𝑅𝑦𝑥  𝜏 ∗  −𝜏 =  𝑅𝑥𝑦  𝜏 ∗  𝜏 =  𝑅𝑥𝑥  𝜏 ∗ (𝜏) ∗  −𝜏  

By calculating the Fourier transform of 𝑅𝑦𝑦  𝜏 , we find the spectral density of the 

output𝑆𝑦𝑦 (𝑓) 

𝑆𝑦𝑦  𝑓 =  𝑆𝑥𝑥 (𝑓) ∙  𝐻(𝑓) 2 

Example 

White noise with an autocorrelation function 𝑅𝑥𝑥  𝜏 =   𝑁0/2 𝛿 𝜏 applied to a filter with an 

impulsive response: 
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 𝑡 =   
𝛼 𝑒−𝛼𝑡 ,   𝑡 ≥    𝑎𝑛𝑑     𝛼 > 0
0,                                     𝑡 < 0

  

Determine the autocorrelation function 𝑅𝑦𝑦  𝜏 of the output process? 

Solution 

The problem can be solved by two methods. We can directly calculate the convolution 

intergral 𝑅𝑦𝑦  𝜏 or the power spectral density 𝑆𝑦𝑦  𝑓 as a function of 𝑆𝑥𝑥  𝑓 , then we 

calculate its inverse Fourier Transform of 𝑆𝑦𝑦  𝑓 . 

Method 1 

For 𝜏 < 0, we have: 

 𝜏 ∗  −𝜏 =   𝛼𝑒−𝛼 𝜏−𝜆 𝛼 𝑒+𝛼𝜆𝑑𝜆 =  𝛼2 𝑒−𝛼𝜏  𝑒2𝛼𝜆𝑑𝜆 =  
𝛼

2

𝜏

−∞

𝑒𝛼𝜏

𝜏

−∞

 

For 𝜏 > 0, we have: 

 𝜏 ∗  −𝜏 =  𝛼𝑒−𝛼 𝜏−𝜆 𝛼𝑒𝛼𝜆𝑑𝜆 =  
𝛼

2
 𝑒−𝛼𝜏

0

−∞

 

SO 

𝑔 𝜏 =   𝜏 ∗  −𝜏 =   

𝛼

2
𝑒𝛼𝜏 ,      𝜏 ≤ 0   

𝛼

2
 𝑒−𝛼𝜏 ,         𝜏 ≥ 0

  

 

    The impulse response with 𝜏parameter 
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SO 

𝑅𝑦𝑦  𝜏 =  𝑅𝑥𝑥  𝜏 ∗ 𝑔 𝜏 =   

𝑁0𝛼

4
 𝑒𝛼𝜏 ,     𝜏 ≤ 0

𝑁0𝛼

4
 𝑒−𝛼𝜏 ,    𝜏 ≥ 0

  

𝑅𝑦𝑦  𝜏 =  
𝑁0𝛼

4
𝑒−𝛼 𝜏  

Method 2 

From the relationship of the output dsp, 𝑆𝑦𝑦 (𝑓)we must first calculate the TF 𝐻(𝑓)of the 

impulse response (𝑡). SO : 

𝐻 𝑓 =  𝛼𝑒−𝛼𝑡𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 = 𝛼  𝑒− 𝑗2𝜋𝑓+𝛼 𝑡𝑑𝑡

∞

0

=
𝛼

𝑗2𝜋𝑓 + 𝛼

∞

0

 

 𝐻(𝑓) 2 =
𝛼2

4𝜋2𝑓2 + 𝛼2
 

While the spectral density of the output is: 

𝑆𝑦𝑦  𝑓 =  𝑆𝑥𝑥  𝑓  𝐻(𝑓) 2 =  
𝑁0𝛼

4

𝛼2

𝜔2 + 𝛼2
 

Or 𝜔 = 2𝜋𝑓. By calculating the inverse Fourier transform of 𝑆𝑦𝑦 (𝑓), we obtain the 

autocorrelation function𝑅𝑦𝑦 (𝜏) 

 

The autocorrelation function of 𝑌(𝑡) 

𝑅𝑦𝑦  𝜏 =  
𝑁0𝛼

4
𝑒−𝛼 𝜏  



108 
 

White noise 

White noise 𝑏(𝑡)is a stationary random process (SSL) at TC or TD, generally centered, whose 

DSP 𝑆𝑏𝑏 (𝑓)is constant over the entire frequency axis (the name ―white‖ therefore refers to 

white light whose power is distributed uniformly over all optical frequencies). Due to the 

definition of the DSP, white noise is therefore characterized by its impulsive autocorrelation 

function 𝑅𝑏𝑏 (𝜏). 

Variance White Noise𝝈𝟐 

The autocorrelation function 

at TC: 𝑅𝑏𝑏  𝜏 =  𝜍2𝛿 𝜏 at TD:𝑅𝑏𝑏  𝑘 =  𝜍2𝛿𝑘 ,0  

the DSP 

at TC: 𝑆𝑏𝑏  𝑓 =  𝑇𝐹 𝑅𝑏𝑏  𝜏  =  𝜍2at TD:𝑆𝑏𝑏  𝑓 =  𝑇𝐹 𝑅𝑏𝑏  𝑘  =  𝜍2 

Other Definitions: 

Weak sense: white noise is a series of uncorrelated VAs (uncorrelated realizations) 

Strong meaning: white noise is a series of independent VAs (independent realizations) 

The term ―whiteness‖ comes from the analogy with white light and reflects the fact that all 

frequencies are present in white noise with the same power. 

A white noise at TD is achievable in practice whereas a white noise at TC is not because its 

power (which is equal to its autocorrelation function at 0) is infinite (Dirac). 

Distribution law: a white process can have any distribution law: normal, uniform, etc. …. 

Ergodicity 

A random process 𝑋(𝑡)can be seen as a multitude of trajectories corresponding to as many 

realizations from experience to identity. However, in a large number of practical cases, only 

one realization of the process is accessible to the measurement 

A stationary random process 𝑋(𝑡)is ergodic if all its statistics can be determined from a single 

realization; that is to say if its average and its autocorrelation function can be obtained by 

performing a temporal average on a single trajectory (a single realization) of infinite duration. 
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Precisely, we speak of ergodicity in the sense of the average and in the sense of the 

autocorrelation function. 

Ergodicity in the sense of the mean 

A random process 𝑋(𝑡)is ergodic in the sense of mean if: 

𝐸 𝑋(𝑡) =   𝑥(𝑡) =  lim
𝑇→∞

1

2𝑇
 𝑥 𝑡 𝑑𝑡

+𝑇

−𝑇

 

The necessary and sufficient condition under which the process 𝑋(𝑡)is ergodic in the sense of 

the average is: 

lim
𝑇→∞

1

2𝑇
 𝑅𝑥𝑥  𝜏 𝑑𝜏 =  𝑚𝑥

2

𝑇

−𝑇

 

Where 𝑚𝑥 = 𝐸 𝑋(𝑡) is the average of𝑋(𝑡) 

 

Ergodicity in the sense of the autocorrelation function 

A random process 𝑋(𝑡)is ergodic in the sense of the autocorrelation function if 

𝑅𝑥𝑥  𝜏 =   𝑥 𝑡 + 𝜏 𝑥(𝑡)  

As  𝑥 𝑡 + 𝜏 𝑥(𝑡)  denotes the time average of the autocorrelation function of the realization 

𝑥(𝑡)and is defined by: 

 𝑥 𝑡 + 𝜏 𝑥(𝑡) =  lim
𝑇→∞

1

2𝑇
 𝑥 𝑡 + 𝜏 𝑥(𝑡)

𝑇

−𝑇

𝑑𝑡 

The necessary and sufficient condition for ergodicity in the sense of the autocorrelation 

function is that the random variables 𝑋 𝑡 + 𝜏 𝑋(𝑡)and 𝑋 𝑡 + 𝜏 + 𝛼 𝑋(𝑡 + 𝛼)become 

uncorrelated for each 𝜏when 𝛼tends to infinity. 

Example : 

Consider a random process 𝑋 𝑡 =  𝐴𝑐𝑜𝑠  2𝜋𝑓𝑐𝑡 + Θ , where 𝐴and 𝑓𝑐are constant, and Θis a 

random variable uniformly distributed over the interval  0, 2𝜋 . 
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Solution 

We have already calculated for this process: 

𝐸 𝑋(𝑡) = 0, And𝑅𝑥𝑥  𝜏 =   
𝐴2

2
 𝑐𝑜𝑠 2𝜋𝑓𝑐𝜏  

Either the completion of the process𝑥 𝑡 = 𝐴𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 + 𝜃  

The temporal average 𝑥(𝑡) = lim𝑇→∞
1

2𝑇
 𝐴𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 + 𝜃 𝑑𝑡 = 0

𝑇

−𝑇
 

And 𝑥(𝑡 + 𝜏)𝑥(𝑡) = lim𝑇→∞
𝐴2

2𝑇
 𝑐𝑜𝑠 2𝜋𝑓𝑐(𝑡 + 𝜏 + 𝜃)𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 + 𝜃 𝑑𝑡

𝑇

−𝑇
 

=   
𝐴2

2
 𝑐𝑜𝑠 2𝜋𝑓𝑐𝜏  

Then, the process is ergodic in the sense of the mean and in the sense of the autocorrelation 

function. 

1
st 

Order Distribution Function 

Consider 𝑋(𝑡)a stationary random process. We define the random process 𝑌(𝑡)as follows: 

𝑌 𝑡 =   
1,      𝑋 𝑡 ≤ 𝑥𝑡

0,      𝑋 𝑡 > 𝑥𝑡

  

We say that the random process 𝑋(𝑡)is ergodic in the sense of the 1st order distribution 
if 

: 

𝐹𝑋 𝑥; 𝑡 =  lim
𝑇→∞

1

2𝑇
 𝑦 𝑡 𝑑𝑡

𝑇

−𝑇

 

Where 𝐹𝑋 𝑥; 𝑡 =  𝑃 𝑋(𝑡) ≤ 𝑥(𝑡) and 𝑦(𝑡)is a sample function of the process 𝑌(𝑡). The 

necessary and sufficient condition under which the process is ergodic in the sense of the 1st 

order distribution 
is 

that 𝑋(𝑡 + 𝜏)and 𝑋(𝑡)becomes statistically independent when 𝜏tends to 

infinity. 

Ergodicity in the Sense of Power Spectral Density 

The stationary process in the broad sense (SSL) 𝑋(𝑡)is ergodic in the sense of power spectral 

density if, for any sample function 𝑥(𝑡), 
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𝑆𝑥𝑥  𝑓 =  lim
𝑇→∞

1

2𝑇
  𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

𝑇

−𝑇

 

2

 

Except for the set of sample functions which occur with zero probability. 

Examples of random processes: 

Thermal noise 

The electrical noise that appears from the random movement of electrons in conductors is 

called thermal noise. It can be shown that the power spectral density of the thermal noise 

voltage across a resistor is given by  r: 

𝑆𝑛𝑛  𝑓 =  2𝑘𝑇𝑅
𝛼2

𝛼2 + 𝜔2
 

where 𝑘 = 1.38 × 10−23   𝐽/𝐾is the Boltzmann constant, and 𝑇is the absolute temperature in 

𝐾. Figure 2.10 illustrates the shape of the power spectral density of thermal noise. 

 

      spectral density of thermal noise 

 

However, 𝛼is of the order of 1014  𝑟𝑎𝑑/𝑠( 1013  𝐻𝑧 =  104  𝐺𝐻𝑧which is higher than most 

frequencies used in electrical circuits. Then  𝛼2 + 𝜔2 /𝛼2 → 1thermal noise is considered as 

a white noise process with a flat spectrum of value 2𝑘𝑇𝑅 𝑉2/𝐻𝑧as is shown in Figure 2.11. 

 

white noise spectrum 
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Additionally, since the number of electrons in a resistor is very large with statistically 

independent random movements, from the central limit theorem, the thermal noise is modeled 

as Gaussian with zero mean. As a result, the thermal noise voltage is a white Gaussian process 

with zero mean. The resistance can be modeled by the Thévenin equivalent circuit, which 

consists of a non-noise resistance in series with a voltage noise source. Figure 2.12 (a) 

illustrates this circuit. The mean square value of this noisy source is: 

𝐸 𝑉𝑛
2(𝑡) = 4𝑘𝑇𝑅  

We can also model the noisy resistance by an equivalent Norton circuit, which is made up of a 

non-noise resistance in parallel with a current noise source as shown in Figure 2.12 (b). The 

root mean square value of this source is: 

𝐸 𝐼𝑛
2(𝑡) = 4𝑘𝑇𝐺 

where 𝐺 = 1/𝑅is an admittance. The spectral density of the noise voltage source and the 

noise current source are respectively: 

𝑆𝑣𝑛𝑣𝑛
 𝑓 =  2𝑘𝑇𝑅     𝑉2/𝐻𝑧 

𝑆𝑖𝑛 𝑖𝑛
 𝑓 =  2𝑘𝑇𝐺    𝐴2/𝐻𝑧 

 

   Fig.2.12 Noisy resistance: (a) Thévnin’s equivalent circuit 

      (b) Norton's equivalent circuit 

 

 

 



113 
 

Nyquist's theorem 

Consider a passive RLC network as shown in Figure 2.13. the voltage across the network is 

𝑣(𝑡)and 𝑍(𝑗𝜔)is the impedance. Then, the power spectral density of the open circuit noise 

voltage due to all thermal noise sources is given by: 

𝑆𝑣𝑛𝑣𝑛
 𝑓 =  2𝑘𝑇ℜ 𝑍(𝑗𝜔)  

Or, the power spectral density of the short circuit noise current is given by: 

𝑆𝑖𝑛 𝑖𝑛
 𝑓 =  2𝑘𝑇ℜ 𝑌(𝑗𝜔)  

where 𝑌 𝑗𝜔 = 1/𝑍(𝑗𝜔)is the admittance of the network input and𝜔 = 2𝜋𝑓 

 

The passive RLC network 

Example 

Determine the power spectral density of the voltage 𝑣(𝑡)across the RC network in Figure 

2.14, due to the thermal noise generated in R, using: 

a) Thévenin’s equivalent circuit 

b) Norton's equivalent circuit 

c) Nyquist's theorem 

 

                 The RC network 
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Solution 

Thévenin equivalent circuit 

 

             Thévenin equivalent circuit 

(a) Using the Thévenin equivalent circuit, the transfer function of the noise source (by 

applying the voltage divider) is: 

𝐻 𝑗𝜔 =  

1
𝑗𝜔𝐶

𝑅 +
1

𝑗𝜔𝐶

=  
1

1 + 𝑗𝜔𝑅𝐶
 

SO : 

𝑆𝑣0𝑣0
 𝜔 =  𝑆𝑣𝑛𝑣𝑛

 𝜔  𝐻(𝑗𝜔) 2 =  
2𝑘𝑇𝑅

1 +  𝜔𝑅𝐶 2
 

(b) Using Norton's equivalent circuit, the resulting circuit is shown in Figure 2.15. 

 

Norton equivalent circuit 

The transfer function in this case is: 

𝐻 𝑗𝜔 =  

𝑅
𝑗𝜔𝐶

𝑅 +
1

𝑗𝜔𝐶

=  
𝑅

1 + 𝑗𝜔𝑅𝐶
 

The power spectral density of the output voltage is: 
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𝑆𝑣0𝑣0
 𝜔 =  𝑆𝑖𝑛 𝑖𝑛

 𝜔  𝐻 𝑗𝜔  2 =  
2𝑘𝑇

𝑅
 

𝑅2

1 +  𝜔𝑅𝐶 2
=  

2𝑘𝑇𝑅

1 +  𝜔𝑅𝐶 2
 

(c) The impedance seen at the network terminals is: 

𝑍 𝑗𝜔 =  

𝑅
𝑗𝜔𝐶

𝑅 +
1

𝑗𝜔𝐶

=  
𝑅

1 + 𝑗𝜔𝑅𝐶
=  

𝑅

1 +  𝜔𝑅𝐶𝜔 2
−  𝑗 

𝜔𝑅𝐶

1 +  𝜔𝑅𝐶𝜔 2
 

According to Nyquist's theorem, the power spectral density of the noise voltage source is: 

𝑆𝑣0𝑣0
 𝜔 = 2𝑘𝑇ℜ𝑒 𝑍(𝑗𝜔) =  

2𝑘𝑇𝑅

1 +  𝜔𝑅𝐶 2
 

We notice that the three methods of (a), (b) and (c) lead to the same result. 

Generally, the power spectral density of the white noise process is denoted by: 

𝑆𝑛𝑛  𝑓 =  
𝑁0

2
,    − ∞ < 𝑓 < ∞ 

The autocorrelation function is then: 

𝑅𝑛𝑛  𝜏 =  
𝑁0

2
𝛿(𝜏) 

     Since the bandwidth of real systems is finite, DSP 𝑆𝑛𝑛  𝑓 over a finite frequency band 

leads to a finite average power. 
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CHAPITRE VII 

Discrete Random Processes 

Introduction 

In this Chapter, we consider another class of random processes; namely discrete-time 

stochastic processes. A discrete random process can be a uniformly sampled version of a 

continuous random process. It is a collection of a real or complex set of discrete sequences of 

time. The discrete sequence is also called realizations and denoted by 𝑋 𝑛 . 𝑋 𝑛 represents a 

random variable. The sequence 𝑋 𝑛 , 𝑋 𝑛 − 1 , …  , 𝑋(𝑛 − 𝑀 + 1)consists of the next 

observation and the previous observations 𝑛 − 1, 𝑛 − 2, …  , 𝑛 − 𝑀 + 1. As a result, several 

discrete random processes are approximated by a parametric model. Power spectral density is 

a function of a parametric model. Then, the choice of a model and the estimation of the model 

parameters are necessary. These approaches are called: parametric estimation. 

If 𝑈 𝑛 is an input sequence and 𝑋(𝑛)the output sequence, then the general recursive 

model of this system is given by the equation: 

 

 

𝑋 𝑛 =  −  𝑎 𝑘 𝑋 𝑛 − 𝑘 +  𝑏 𝑘 𝑈(𝑛 − 𝑘)

𝑞

𝑘=0

𝑝

𝑘=1

 

The calculation of the spectrum using this parametric model is called parametric spectral 

estimation. In fact, parametric spectral estimation is a very broad field, we are not going to 

address this problem. However, we will introduce 

 The autoregressive process ( AR ); 

 The moving average process ( MA ), 

 The autoregressive moving average ( ARMA ) process 

Before discussing these models, it is worth recalling the Wiener-Khinchin relations of the 

power spectral density and the autocorrelation function for a discrete random process. 

Consider 𝑟𝑥𝑥 (𝑘)the autocorrelation function of a discrete random process. Then the Fourier 

transform of 𝑟𝑥𝑥 (𝑘)is the power spectral density𝑆𝑥𝑥 (𝜔) 

 
𝑈(𝑛) 𝑋(𝑛) 
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𝑆𝑥𝑥  𝜔 =   𝑟𝑥𝑥  𝑘 𝑒−𝑗𝜔𝑘 ,           𝜔 < 𝜋

∞

𝑘=−∞

 

where 𝜔 = 2𝜋𝑓is the angular frequency. 

Moreover, 

𝑆𝑥𝑥  𝜔 + 2ℓ𝜋 =   𝑟𝑥𝑥  𝑘 𝑒−𝑗 𝜔+2ℓ𝜋 𝑘 =   𝑟𝑥𝑥  𝑘 𝑒−𝑗𝜔𝑘 𝑒−𝑗2ℓ𝜋𝑘 =  𝑆𝑥𝑥 (𝜔)

∞

𝑘=−∞

∞

𝑘=−∞

 

𝑒−𝑗2ℓ𝜋𝑘 = 1  

Then, the power spectral density is a periodic function of period 2𝜋. 

𝑟𝑥𝑥  𝑘 =  
1

2𝜋
 𝑆𝑥𝑥  𝜔 𝑒−𝑗𝜔𝑘 𝑑𝜔

𝜋

−𝜋

 

The root mean square value which represents the average power of the process is: 

𝑟𝑥𝑥  0 =  𝐸  𝑋(𝑛) 2 =  
1

2𝜋
 𝑆𝑥𝑥  𝜔 𝑑𝜔

𝜋

−𝜋

=   𝑆𝑥𝑥  𝑓 𝑑𝑓

𝑓/2

−𝑓/2

 

𝜔 = 2𝜋𝑓  

The power spectral density is real because: 

𝑟𝑥𝑥  −𝑘 =  𝑟𝑥𝑥  𝑛, 𝑛 − 𝑘 =  𝐸 𝑋 𝑛 𝑋∗(𝑛 − 𝑘)  

=  𝐸 𝑋∗(𝑛 − 𝑘)𝑋 𝑛  =  𝑟𝑥𝑥
∗ (𝑘) 

By analogy, the interpower spectral density is defined by: 

𝑆𝑥𝑦  𝜔 =   𝑟𝑥𝑦 (𝑘)𝑒−𝑗𝜔𝑘

∞

𝑘=−∞

 

For greater clarity, we consider the following discrete linear system: 

 

 

 

Fig. 7.1 discrete linear system 

With ℎ 𝑛 the impulse response of the system. 

(𝑛) 
𝑋(𝑛) 𝑌(𝑛) 
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𝑟𝑥𝑦  𝑘 =  𝑘 ∗ 𝑟𝑥𝑥  𝑘 =    ℓ 𝑟𝑥𝑥  𝑘 − ℓ =  𝑟𝑥𝑥  𝑘 ∗  𝑘 =

∞

ℓ=−∞

 𝑟𝑥𝑥  ℓ (𝑘 − ℓ)

∞

ℓ=−∞

 

And 

𝑟𝑦𝑥  𝑘 =  ∗ −𝑘 ∗ 𝑟𝑥𝑥  𝑘 =  ∗ 𝑙 𝑟𝑥𝑥 (𝑘 − 𝑙)

∞

ℓ=−∞

 

The autocorrelation function of the output process is: 

𝑟𝑦𝑦  𝑘 =  𝑘 ∗ 𝑟𝑦𝑥  𝑘 =  𝑘 ∗ ∗ −𝑘 ∗ 𝑟𝑥𝑥 (𝑘) 

The corresponding spectral densities are therefore: 

𝑆𝑥𝑦  𝜔 =   𝑟𝑥𝑦 (𝑘)𝑒−𝑗𝜔𝑘

∞

𝑘=−∞

 

And 

𝑆𝑦𝑥  𝜔 =   𝑟𝑦𝑥 (𝑘)𝑒−𝑗𝜔𝑘

∞

𝑘=−∞

 

With the transformation into 𝑍, we will have: 

𝑆𝑥𝑦  𝑍 =  𝐻(𝑍)𝑆𝑥𝑥 (𝑍) 

And 

𝑆𝑦𝑥  𝑍 =  𝐻∗  
1

𝑍∗
 𝑆𝑥𝑥 (𝑍) 

And 

𝑆𝑦𝑦  𝑍 =  𝐻(𝑍)𝐻∗  
1

𝑍∗
 𝑆𝑥𝑥 (𝑍) 

where, 𝐻(𝑍)is the transform 𝑍of ℎ(𝑛), also denoted by 𝛧 ℎ(𝑛) , and is given by: 

𝐻 𝑍 =  (𝑛)𝑍−𝑛

∞

𝑛=−∞

 

The frequency response 𝐻(𝑒𝑗𝜔 )can be deduced from 𝐻(𝑍)evaluated on the unit circle of the 

plane 𝑍( 𝑍 =  𝑒𝑗𝜔 ). For ℎ(𝑛)real, 𝐻∗  
1

𝑍∗
 = 𝐻  

1

𝑍
 and the spectral density of the output is 

given by: 

𝑆𝑦𝑦  𝜔 =   𝐻 𝑒𝑗𝜔   
2
𝑆𝑥𝑥 (𝜔) 
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Example 4.1 

Consider the system in Figure 7.1. determine the power spectral density of the output, if the 

input 𝑋(𝑛)is a stationary white noise process 

Solution : 

The white noise autocorrelation function is: 

𝑟𝑥𝑥  𝑛, 𝑛 + 𝑘 =  𝑟𝑥𝑥  𝑘 =  𝜍𝑛
2𝛿(𝑘) 

With 

𝛿 𝑘 =   
1,    𝑘 = 0
0,    𝑘 ≠ 0

  

The power spectral density 𝑆𝑥𝑥 (𝑓)is 

𝑆𝑥𝑥  𝜔 =  𝜍𝑛
2 

Then, the spectral density of the output is: 

𝑆𝑦𝑦  𝜔 =  𝑆𝑥𝑥  𝜔  𝐻 𝑒𝑗𝜔    2 =  𝜍𝑛
2 𝐻 𝑒𝑗𝜔    2 

2.  AR, MA AND ARMA random processes 

 The power spectral density of a random process plays an essential role in spectral 

estimation. It provides important information on the structure of the process. Such 

information can be used in several applications, such as prediction, modeling or filtering of 

the observed signal. There are two spectral estimation methods: 

1. Non-parametric spectral estimation: which is based on the autocorrelation function 

(second order statistics of the process). We therefore estimate a quantity. 

2. Parametric spectral estimation: which is based on a parametric model of the power 

spectral density. We must therefore first choose the model, then estimate the 

parameters. 

We consider the following system: 

 

 

Such that the input is a white noise process. The output is described by a parametric model; 

the power spectral density of the output is expressed as a function of the parameters. 

Therefore, it is imperative to choose a parametric model and estimate its parameters. The 

most used models are: 

 The AR (autoregressive) model 

 The MA (moving average) model 

 
𝑒(𝑛) 𝑋(𝑛) 
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 The ARMA (autoregressive moving average) model 

4.2.1  Autoregressive (AR) Model 

 An AR process is represented by the following equation: 

𝑋 𝑛 =  −  𝑎𝑘𝑋 𝑛 − 𝑘 +  𝑒 𝑛 =  𝜔𝑘𝑋 𝑛 − 𝑘 +  𝑒 𝑛  

𝑝

𝑘=1

 

𝑝

𝑘=1

 

where 𝑋 𝑛 is the actual observed random sequence, 

𝑎𝑘 ,   𝑘 = 1,2, … , 𝑝, are constants called parameters, such that 𝜔𝑘 =  −𝑎𝑘  

𝑒(𝑛)is the sequence of independent and identically distributed random variables (iid), white 

Gaussian noise process of zero mean with unknown variance𝜍𝑛
2 

𝑝is the order of the filter. 

The sequence 𝑋(𝑛)is called an autoregressive model of order 𝑝, and ,denoted by 𝐴𝑅(𝑝). The 

term autoregressive arises from the fact that 𝑋(𝑛), the present value of the process is given by 

𝑋 𝑛 =  −𝑎1𝑋 𝑛 − 1 − 𝑎2𝑋 𝑛 − 2 −  …− 𝑎𝑝𝑋 𝑛 − 𝑝 + 𝑒(𝑛) 

It is a linear combination of 𝑋 𝑛 − 1 , 𝑋 𝑛 − 2 , … , 𝑋 𝑛 − 𝑝 , the previous values of the 

process, and the term 𝑒(𝑛). The transform 𝑍is given by: 

𝑋 𝑍 =  −   𝑎𝑘𝑍−𝑘𝑋 𝑍 +  𝐸(𝑍)

𝑝

𝑘=1

 

⟹    𝑋 𝑍  1 +  𝑎𝑘𝑍−𝑘𝑝
𝑘=1  =  𝐸(𝑍) 

𝑋 𝑍  1 + 𝑎1𝑍
−1 + 𝑎2𝑍

−2 + … + 𝑎𝑝𝑍−𝑝 =  𝐸(𝑍) 

where is the 𝑋(𝑍)de 𝑋(𝑛)transform 𝑍and is the 𝐸(𝑍)de 𝑒(𝑛)transform 𝑍, and 

𝑇𝑍 𝑋(𝑛 − 𝑘) =  𝑍−𝑘𝑋 𝑍 ,   𝑘 = 1,2, … , 𝑝 

The transfer function of the filter, 𝐻(𝑍), is therefore: 

𝐻 𝑍 =  
𝑋(𝑍)

𝐸(𝑍)
=  

1

1 +  𝑎𝑘𝑍−𝑘𝑝
𝑘=1

 

𝑍 =  𝑒𝑗𝜔  and so 𝐻 𝑒𝑗𝜔  =  
1

1+ 𝑎𝑘𝑒−𝑗𝜔𝑘𝑝
𝑘=1

 

Let us recall that the spectral density of the output 𝑋(𝑛)is: 

𝑆𝑥𝑥  𝑓 =  𝐻 𝑓  2𝑆𝑒𝑒 (𝑓) 
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𝑒(𝑛)is centered and variance Gaussian white noise 𝜍𝑛    
2 , and𝑆𝑒𝑒  𝑓 =  𝜍𝑛

2 

SO : 

𝑆𝑥𝑥  𝑓 =
𝜍𝑛

2

 1 +  𝑎𝑘𝑒−𝑗2𝜋𝑓𝑘𝑝
𝑘=1  

2 

 

 

Fig. 7.2 . Creating an 𝐴𝑅(𝑝)all-pole filter 

 

To study the 𝑋 𝑛 model process 𝐴𝑅 𝑝 , it is necessary to determine the mean, the 

autocorrelation function, the correlation coefficients and the power spectral density which will 

be a function of the model parameters. The process is assumed to be stationary. 

model 𝑨𝑹(𝒑)average𝑬[𝑿 𝒏 ] 

The average of 𝑋(𝑛)is given by: 

𝐸 𝑋 𝑛  =  𝑚𝑥 = 𝐸  −  𝑎𝑘𝑋 𝑛 − 𝑘 + 𝑒(𝑛)

𝑝

𝑘=1

 =  −  𝐸 𝑋(𝑛 − 𝑝) 

𝑝

𝑘=1

 

With 𝐸 𝑒(𝑛) = 0. We start with𝑝 = 1 

Process𝑨𝑹(𝟏)  
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For 𝑝 = 1, the order 1 process is: 

𝑋 𝑛 =  −𝑎1𝑋 𝑛 − 1 + 𝑒(𝑛) 

The first order average is then: 

𝐸 𝑋(𝑛) =  𝑚𝑥 =  −𝐸 𝑎1𝑋(𝑛 − 1) =  −𝑎1𝑚𝑥  

If 𝑎1 ≠ 0 then 𝑚𝑥 = 0 

Process 𝑨𝑹(𝟏)Variance𝝈𝒙
𝟐 

𝜍𝑥
2 = 𝐸 𝑋 𝑛 𝑋∗(𝑛) = 𝐸  −𝑎1𝑋 𝑛 − 1 + 𝑒(𝑛)  −𝑎1𝑋

∗ 𝑛 − 1 + 𝑒∗(𝑛)   

=
𝜍𝑛

2

1 − 𝑎1
2 

As long as the initial condition is assumed to be Gaussian, 𝐸 𝑋(0) = 0uncorrelated and 

independent of the Gaussian white noise process. SO 

𝐸 𝑋 𝑛 − 1 𝑒 𝑛  = 0 

𝜍𝑥
2 = 𝑎1

2𝜍𝑥
2 +  𝜍𝑛

2 

The variance must be finite and positive, then  𝑎1
2 < 1,−1 < 𝑎1 < 1 

Process 𝑨𝑹(𝟏)autocorrelation function𝒓𝒙𝒙(𝒌) 

𝑟𝑥𝑥  𝑘 =  𝐸 𝑋 𝑛 𝑋(𝑛 − 1)  

𝑟𝑥𝑥  𝑘 =  −1 𝑘𝑎1
𝑘𝑟𝑥𝑥 (0) 

Autocorrelation coefficient of the process𝑨𝑹(𝟏) 

𝜌𝑘 =  
𝑟𝑥𝑥 (𝑘)

𝑟𝑥𝑥 (0)
=   −1 𝑘𝑎1

𝑘  

Process power spectral density𝑨𝑹(𝟏) 

𝑆𝑥𝑥  𝑓 =   𝐻 𝑓  2𝑆𝑒𝑒 (𝑓) 

Such that 𝑆𝑒𝑒 (𝑓)is the power spectral density of the noise𝑆𝑒𝑒  𝑓 =  𝜍𝑛
2 

The transfer function is given by : 

𝐻 𝑒𝑗𝜔  =  
1

1 + 𝑎1𝑒−𝑗𝜔
,      𝜔 < 𝜋,   𝑍 = 𝑒𝑗𝜔  

And 

 𝐻(𝑒𝑗𝜔 ) 
2

=  
1

1 + 2𝑎1𝑐𝑜𝑠2𝜋𝑓 +  𝑎1
2 ,       𝑓 <

1

2
,    𝜔 = 2𝜋𝑓 
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Then the power spectral density of the process𝐴𝑅(1) 

𝑆𝑥𝑥  𝑓 =  
𝜍𝑛

2

1 + 2𝑎1𝑐𝑜𝑠2𝜋𝑓 +  𝑎1
2 =  

𝜍𝑥
2 1 − 𝑎1

2 

1 + 2𝑎1𝑐𝑜𝑠2𝜋𝑓 +  𝑎1
2 

Where 𝜍𝑛
2is deduced from the relation of𝜍𝑥

2 

Process𝑨𝑹(𝒑) 

𝑋 𝑛 = −  𝑎𝑘𝑋 𝑛 − 𝑘 + 𝑒(𝑛)

𝑝

𝑘=1

 

With an average 

𝐸 𝑋(𝑛) = 𝑚𝑥 = 0      𝑓𝑜𝑟      𝑎𝑘 ≠ 1

𝑝

𝑘=1

 

and a variance 

𝜍𝑥
2 = 𝐸 𝑋 𝑛 𝑋∗(𝑛) =  −  𝑎𝑘𝑟𝑥𝑥  𝑘 + 𝜍𝑛

2

𝑛

𝑘=1

 

Process power spectral density 𝑨𝑹(𝒑) 

𝑆𝑥𝑥  𝑓 =
𝜍𝑛

2

 1 +  𝑎𝑘𝑒−𝑗2𝜋𝑓𝑘𝑝
𝑘=1  

2 

To determine, it is necessary to estimate the 𝑆𝑥𝑥  𝑓 process parameters .𝑎𝑘  

4.2.2  MA (Moving Average) process 

𝑋 𝑛 =   𝑏𝑘𝑒 𝑛 − 𝑘 

𝑞

𝑘=0

 

Where 𝑏0, 𝑏1, …  , 𝑏𝑞  constants are called the MA parameters, such that  𝑏𝑘 = 1𝑞
𝑘=0 and 

𝑒(𝑛)is the input (white noise process). 

The Transfer Function 

𝐻 𝑍 =  1 + 𝑏1𝑍
−1 + 𝑏2𝑍

−2 +  … + 𝑏𝑞𝑍−𝑞  

𝑏0 = 1  

The transfer function is then: 
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𝐻 𝑒𝑗2𝜋𝑓  = 1 +  𝑏𝑘𝑒−𝑗2𝜋𝑓𝑘

𝑞

𝑘=1

 

The average 

𝐸 𝑋(𝑛) =  𝑚𝑥 = 𝐸  𝑒 𝑛 +  𝑏𝑘𝑒(𝑛 − 𝑘)

𝑞

𝑘=1

 = 0 

 

The variance 

𝜍𝑥
2 =  𝜍𝑛

2  1 +  𝑏𝑖
2

𝑞

𝑖=1

  

The autocorrelation function 

𝑟𝑥𝑥  𝑘 = 𝐸   𝑒 𝑛 +  𝑏𝑖𝑒(𝑛 − 𝑖)

𝑞

𝑖=1

  𝑒 𝑛 − 𝑘 +  𝑏𝑖𝑒(𝑛 − 𝑘 − 𝑗)

𝑞

𝑗 =1

   

= 𝑟𝑒𝑒  𝑘 +  𝑏𝑗 𝑟𝑒𝑒 (𝑘 + 𝑗)

𝑞

𝑗 =1

+  𝑏𝑖𝑟𝑒𝑒  𝑘 − 𝑖 +   𝑏𝑖𝑏𝑗 𝑟𝑒𝑒 (𝑘 + 𝑗 − 𝑖)

𝑞

𝑗 =1

𝑞

𝑖=1

𝑞

𝑖=1

 

=

 
 
 
 
 
 

 
 
 
 
 
𝜍𝑛

2  1 +  𝑏𝑗
2

𝑞

𝑗 =1

                 , 𝑘 = 0

𝜍𝑛
2  𝑏1 +  𝑏𝑗 𝑏𝑗−1

𝑞

𝑗 =2

 ,               𝑘 = 1

𝜍𝑛
2  𝑏1 +  𝑏𝑗 𝑏𝑗−2

𝑞

𝑗 =3

 ,               𝑘 = 2

  

 

Extera, until 𝑘 = 𝑞. The general form can therefore be deduced as follows: 

𝑟𝑥𝑥  𝑘 =

 
 
 

 
 

𝜍𝑛
2  𝑏𝑘 +  𝑏𝑗𝑏𝑗−𝑘

𝑞

𝑗 =𝑘+1

 ,          𝑘 < 𝑞

𝜍𝑛
2𝑏𝑞 ,                                              𝑘 = 𝑞

0,                                                    𝑘 > 𝑞
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Power Spectral Density 

𝑆𝑥𝑥  𝑓 = 𝜍𝑛
2  1 +  𝑏𝑘𝑒−𝑗2𝜋𝑓𝑘

𝑞

𝑘=1

 

2

,     𝑓 <
1

2
 

 

Fig. 7.3. Creation of an order moving average filter𝑞 𝑀𝐴all zeros 

4.2.3  ARMA process 

𝑋 𝑛 + 𝑎1𝑋 𝑛 − 1 +  …  + 𝑎𝑝𝑋 𝑛 − 𝑝 = 𝑒 𝑛 + 𝑏1𝑒 𝑛 − 1 +  … + 𝑏𝑞𝑒(𝑛 − 𝑞) 

𝑋 𝑛 =  −  𝑎𝑘𝑋(𝑛 − 𝑘)

𝑝

𝑘=1

+ 𝑒 𝑛 +  𝑏𝑙𝑒(𝑛 − 𝑙)

𝑞

𝑙=1

 

By calculating the Z transform and from the impulse response 

𝐻 𝑍 =
1 +  𝑏𝑙𝑍

−𝑙𝑞
𝑙=1

1 +  𝑎𝑘𝑍−𝑘𝑝
𝑘=1

 

Power Spectral Density 
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𝑆𝑥𝑥  𝑓 = 𝜍𝑛
2

 1 +  𝑏𝑙𝑒
−𝑗2𝜋𝑓𝑙𝑞

𝑙=1  
2

 1 +  𝑎𝑘𝑒−𝑗2𝜋𝑓𝑘𝑝
𝑘=1  

2 ,     𝑓 <
1

2
 

 

 

Fig. 7.4. Creation of an Autoregressive Moving Average order filter(𝑝, 𝑞) 𝐴𝑅𝑀𝐴with

 𝑝 > 𝑞 
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