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Nonlinear State Model

ẋ1 = f1(t, x1, . . . , xn, u1, . . . , up)

ẋ2 = f2(t, x1, . . . , xn, u1, . . . , up)

...
...

ẋn = fn(t, x1, . . . , xn, u1, . . . , up)

ẋi denotes the derivative of xi with respect to the time
variable t

u1, u2, . . ., up are input variables

x1, x2, . . ., xn the state variables
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ẋ = f(t, x, u)
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ẋ = f(t, x, u)

y = h(t, x, u)

x is the state, u is the input
y is the output (q-dimensional vector)

Special Cases:
Linear systems:

ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u

Unforced state equation:

ẋ = f(t, x)

Results from ẋ = f(t, x, u) with u = γ(t, x)
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Autonomous System:

ẋ = f(x)

Time-Invariant System:

ẋ = f(x, u)

y = h(x, u)

A time-invariant state model has a time-invariance property
with respect to shifting the initial time from t0 to t0 + a,
provided the input waveform is applied from t0 + a rather
than t0
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Existence and Uniqueness of Solutions

ẋ = f(t, x)

f(t, x) is piecewise continuous in t and locally Lipschitz in
x over the domain of interest

f(t, x) is piecewise continuous in t on an interval J ⊂ R if
for every bounded subinterval J0 ⊂ J , f is continuous in t
for all t ∈ J0, except, possibly, at a finite number of points
where f may have finite-jump discontinuities

f(t, x) is locally Lipschitz in x at a point x0 if there is a
neighborhood N(x0, r) = {x ∈ Rn | ‖x − x0‖ < r}
where f(t, x) satisfies the Lipschitz condition

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, L > 0
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A function f(t, x) is locally Lipschitz in x on a domain
(open and connected set) D ⊂ Rn if it is locally Lipschitz at
every point x0 ∈ D

When n = 1 and f depends only on x

|f(y) − f(x)|

|y − x|
≤ L

On a plot of f(x) versus x, a straight line joining any two
points of f(x) cannot have a slope whose absolute value is
greater than L

Any function f(x) that has infinite slope at some point is
not locally Lipschitz at that point
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A discontinuous function is not locally Lipschitz at the points
of discontinuity

The function f(x) = x1/3 is not locally Lipschitz at x = 0
since

f ′(x) = (1/3)x−2/3 → ∞ a x → 0

On the other hand, if f ′(x) is continuous at a point x0 then
f(x) is locally Lipschitz at the same point because
continuity of f ′(x) ensures that |f ′(x)| is bounded by a
constant k in a neighborhood of x0 ; which implies that
f(x) satisfies the Lipschitz condition L = k

More generally, if for t ∈ J ⊂ R and x in a domain
D ⊂ Rn, f(t, x) and its partial derivatives ∂fi/∂xj are
continuous, then f(t, x) is locally Lipschitz in x on D
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Lemma: Let f(t, x) be piecewise continuous in t and
locally Lipschitz in x at x0, for all t ∈ [t0, t1]. Then, there is
δ > 0 such that the state equation ẋ = f(t, x), with
x(t0) = x0, has a unique solution over [t0, t0 + δ]

Without the local Lipschitz condition, we cannot ensure
uniqueness of the solution. For example, ẋ = x1/3 has
x(t) = (2t/3)3/2 and x(t) ≡ 0 as two different solutions
when the initial state is x(0) = 0

The lemma is a local result because it guarantees existence
and uniqueness of the solution over an interval [t0, t0 + δ],
but this interval might not include a given interval [t0, t1].
Indeed the solution may cease to exist after some time
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Example:
ẋ = −x2

f(x) = −x2 is locally Lipschitz for all x

x(0) = −1 ⇒ x(t) =
1

(t − 1)

x(t) → −∞ as t → 1

the solution has a finite escape time at t = 1

In general, if f(t, x) is locally Lipschitz over a domain D
and the solution of ẋ = f(t, x) has a finite escape time te,
then the solution x(t) must leave every compact (closed
and bounded) subset of D as t → te
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Global Existence and Uniqueness

A function f(t, x) is globally Lipschitz in x if

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖

for all x, y ∈ Rn with the same Lipschitz constant L

If f(t, x) and its partial derivatives ∂fi/∂xj are continuous
for all x ∈ Rn, then f(t, x) is globally Lipschitz in x if and
only if the partial derivatives ∂fi/∂xj are globally bounded,
uniformly in t

f(x) = −x2 is locally Lipschitz for all x but not globally
Lipschitz because f ′(x) = −2x is not globally bounded
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Lemma: Let f(t, x) be piecewise continuous in t and
globally Lipschitz in x for all t ∈ [t0, t1]. Then, the state
equation ẋ = f(t, x), with x(t0) = x0, has a unique
solution over [t0, t1]

The global Lipschitz condition is satisfied for linear systems
of the form

ẋ = A(t)x + g(t)

but it is a restrictive condition for general nonlinear systems
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Lemma: Let f(t, x) be piecewise continuous in t and
locally Lipschitz in x for all t ≥ t0 and all x in a domain
D ⊂ Rn. Let W be a compact subset of D, and suppose
that every solution of

ẋ = f(t, x), x(t0) = x0

with x0 ∈ W lies entirely in W . Then, there is a unique
solution that is defined for all t ≥ t0
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Example:
ẋ = −x3 = f(x)

f(x) is locally Lipschitz on R, but not globally Lipschitz
because f ′(x) = −3x2 is not globally bounded

If, at any instant of time, x(t) is positive, the derivative ẋ(t)
will be negative. Similarly, if x(t) is negative, the derivative
ẋ(t) will be positive

Therefore, starting from any initial condition x(0) = a, the
solution cannot leave the compact set {x ∈ R | |x| ≤ |a|}

Thus, the equation has a unique solution for all t ≥ 0
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Equilibrium Points

A point x = x∗ in the state space is said to be an
equilibrium point of ẋ = f(t, x) if

x(t0) = x∗ ⇒ x(t) ≡ x∗, ∀ t ≥ t0

For the autonomous system ẋ = f(x), the equilibrium
points are the real solutions of the equation

f(x) = 0

An equilibrium point could be isolated; that is, there are no
other equilibrium points in its vicinity, or there could be a
continuum of equilibrium points
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A linear system ẋ = Ax can have an isolated equilibrium
point at x = 0 (if A is nonsingular) or a continuum of
equilibrium points in the null space of A (if A is singular)

It cannot have multiple isolated equilibrium points , for if xa

and xb are two equilibrium points, then by linearity any point
on the line αxa + (1 − α)xb connecting xa and xb will be
an equilibrium point

A nonlinear state equation can have multiple isolated
equilibrium points .For example, the state equation

ẋ1 = x2, ẋ2 = −a sin x1 − bx2

has equilibrium points at (x1 = nπ, x2 = 0) for
n = 0, ±1, ±2, · · ·
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Linearization

A common engineering practice in analyzing a nonlinear
system is to linearize it about some nominal operating point
and analyze the resulting linear model

What are the limitations of linearization?

Since linearization is an approximation in the
neighborhood of an operating point, it can only predict
the “local” behavior of the nonlinear system in the
vicinity of that point. It cannot predict the “nonlocal” or
“global” behavior

There are “essentially nonlinear phenomena” that can
take place only in the presence of nonlinearity
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Nonlinear Phenomena

Finite escape time

Multiple isolated equilibrium points

Limit cycles

Subharmonic, harmonic, or almost-periodic oscillations

Chaos

Multiple modes of behavior
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Pendulum Equation

θ

  mg

  l

 •

mlθ̈ = −mg sin θ − klθ̇

x1 = θ, x2 = θ̇
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ẋ1 = x2

ẋ2 = − g

l
sin x1 − k

m
x2

Equilibrium Points:

0 = x2

0 = − g

l
sin x1 − k

m
x2

(nπ, 0) for n = 0, ±1, ±2, . . .

Nontrivial equilibrium points at (0, 0) and (π, 0)
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Pendulum without friction:

ẋ1 = x2

ẋ2 = −
g

l
sin x1

Pendulum with torque input:

ẋ1 = x2

ẋ2 = − g

l
sin x1 − k

m
x2 +

1

ml2
T
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Tunnel-Diode Circuit
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diL

dt

x1 = vC , x2 = iL, u = E
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iC + iR − iL = 0 ⇒ iC = −h(x1) + x2

vC − E + RiL + vL = 0 ⇒ vL = −x1 − Rx2 + u

ẋ1 =
1

C
[−h(x1) + x2]

ẋ2 =
1

L
[−x1 − Rx2 + u]

Equilibrium Points:

0 = −h(x1) + x2

0 = −x1 − Rx2 + u
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Mass–Spring System
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mÿ + Ff + Fsp = F

Sources of nonlinearity:

Nonlinear spring restoring force Fsp = g(y)

Static or Coulomb friction
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Fsp = g(y)

g(y) = k(1 − a2y2)y, |ay| < 1 (softening spring)

g(y) = k(1 + a2y2)y (hardening spring)

Ff may have components due to static, Coulomb, and
viscous friction

When the mass is at rest, there is a static friction force Fs

that acts parallel to the surface and is limited to ±µsmg
(0 < µs < 1). Fs takes whatever value, between its limits,
to keep the mass at rest

Once motion has started, the resistive force Ff is modeled
as a function of the sliding velocity v = ẏ
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(a) Coulomb friction; (b) Coulomb plus linear viscous friction; (c) static, Coulomb, and linear

viscous friction; (d) static, Coulomb, and linear viscous friction—Stribeck effect
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Negative-Resistance Oscillator

1

C
iC �	�	�	�	LiL ResistiveElement

i +
�v

(a)
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��XX

v

(b)

i = h(v)

h(0) = 0, h′(0) < 0

h(v) → ∞ as v → ∞, and h(v) → −∞ as v → −∞
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iC + iL + i = 0

C
dv

dt
+

1

L

∫ t

−∞
v(s) ds + h(v) = 0

Differentiating with respect to t and multiplying by L:

CL
d2v

dt2
+ v + Lh′(v)

dv

dt
= 0

τ = t/
√

CL

dv

dτ
=

√
CL

dv

dt
,

d2v

dτ 2
= CL

d2v

dt2
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Denote the derivative of v with respect to τ by v̇

v̈ + εh′(v)v̇ + v = 0, ε =
√

L/C

Special case: Van der Pol equation

h(v) = −v + 1

3
v3

v̈ − ε(1 − v2)v̇ + v = 0

State model: x1 = v, x2 = v̇

ẋ1 = x2

ẋ2 = −x1 − εh′(x1)x2

– p. 13/17



Another State Model: z1 = iL, z2 = vC

ż1 =
1

ε
z2

ż2 = −ε[z1 + h(z2)]

Change of variables: z = T (x)

x1 = v = z2

x2 =
dv

dτ
=

√
CL

dv

dt
=

√

L

C
[−iL − h(vC)]

= ε[−z1 − h(z2)]

T (x) =

[

−h(x1) − 1

ε
x2

x1

]

, T −1(z) =

[

z2

−εz1 − εh(z2)

]
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Adaptive Control

Plant : ẏp = apyp + kpu

ReferenceModel : ẏm = amym + kmr

u(t) = θ∗
1
r(t) + θ∗

2
yp(t)

θ∗
1

=
km

kp
and θ∗

2
=

am − ap

kp

When ap and kp are unknown, we may use

u(t) = θ1(t)r(t) + θ2(t)yp(t)

where θ1(t) and θ2(t) are adjusted on-line
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Adaptive Law (gradient algorithm):

θ̇1 = −γ(yp − ym)r

θ̇2 = −γ(yp − ym)yp, γ > 0

State Variables: eo = yp −ym, φ1 = θ1 −θ∗
1
, φ2 = θ2 −θ∗

2

ẏm = apym + kp(θ
∗
1
r + θ∗

2
ym)

ẏp = apyp + kp(θ1r + θ2yp)

ėo = apeo + kp(θ1 − θ∗
1
)r + kp(θ2yp − θ∗

2
ym)

= · · · · · · + kp[θ
∗
2
yp − θ∗

2
yp]

= (ap + kpθ∗
2
)eo + kp(θ1 − θ∗

1
)r + kp(θ2 − θ∗

2
)yp
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Closed-Loop System:

ėo = ameo + kpφ1r(t) + kpφ2[eo + ym(t)]

φ̇1 = −γeor(t)

φ̇2 = −γeo[eo + ym(t)]
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ẋ1 = f1(x1, x2) = f1(x)

ẋ2 = f2(x1, x2) = f2(x)

Let x(t) = (x1(t), x2(t)) be a solution that starts at initial
state x0 = (x10, x20). The locus in the x1–x2 plane of the
solution x(t) for all t ≥ 0 is a curve that passes through the
point x0. This curve is called a trajectory or orbit
The x1–x2 plane is called the state plane or phase plane
The family of all trajectories is called the phase portrait
The vector field f(x) = (f1(x), f2(x)) is tangent to the
trajectory at point x because

dx2

dx1
=

f2(x)

f1(x)
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Vector Field diagram

Represent f(x) as a vector based at x; that is, assign to x
the directed line segment from x to x + f(x)

q

q

�
�

�
�

�
�

*

x1

x2

f(x)

x = (1, 1)

x + f(x) = (3, 2)

Repeat at every point in a grid covering the plane
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ẋ1 = x2, ẋ2 = −10 sin x1
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Numerical Construction of the Phase Portrait:

Select a bounding box in the state plane

Select an initial point x0 and calculate the trajectory
through it by solving

ẋ = f(x), x(0) = x0

in forward time (with positive t) and in reverse time (with
negative t)

ẋ = −f(x), x(0) = x0

Repeat the process interactively

Use Simulink or pplane
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Qualitative Behavior of Linear Systems

ẋ = Ax, A is a 2 × 2 real matrix

x(t) = M exp(Jrt)M−1x0

Jr =

[

λ1 0

0 λ2

]

or

[

λ 0

0 λ

]

or

[

λ 1

0 λ

]

or

[

α −β

β α

]

x(t) = Mz(t)

ż = Jrz(t)
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Case 1. Both eigenvalues are real: λ1 6= λ2 6= 0

M = [v1, v2]

v1 & v2 are the real eigenvectors associated with λ1 & λ2

ż1 = λ1z1, ż2 = λ2z2

z1(t) = z10e
λ1t, z2(t) = z20e

λ2t

z2 = cz
λ2/λ1

1 , c = z20/(z10)
λ2/λ1

The shape of the phase portrait depends on the signs of λ1

and λ2
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λ2 < λ1 < 0

eλ1t and eλ2t tend to zero as t → ∞

eλ2t tends to zero faster than eλ1t

Call λ2 the fast eigenvalue (v2 the fast eigenvector) and λ1

the slow eigenvalue (v1 the slow eigenvector)

The trajectory tends to the origin along the curve

z2 = cz
λ2/λ1

1 with λ2/λ1 > 1

dz2

dz1
= c

λ2

λ1
z

[(λ2/λ1)−1]
1
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z1

z2

Stable Node

λ2 > λ1 > 0

Reverse arrowheads

Reverse arrowheads =⇒ Unstable Node – p. 9/??



x2

x 1

v1

v2

(b)

x1

x 2

v1

v2

(a)

Stable Node Unstable Node
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λ2 < 0 < λ1

eλ1t → ∞, while eλ2t → 0 as t → ∞

Call λ2 the stable eigenvalue (v2 the stable eigenvector)
and λ1 the unstable eigenvalue (v1 the unstable
eigenvector)

z2 = cz
λ2/λ1

1 , λ2/λ1 < 0

Saddle
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z1

z2

(a)

x 1

x 2
v1v2

(b)

Phase Portrait of a Saddle Point
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Case 2. Complex eigenvalues: λ1,2 = α ± jβ

ż1 = αz1 − βz2, ż2 = βz1 + αz2

r =
√

z2
1 + z2

2, θ = tan−1

(

z2

z1

)

r(t) = r0e
αt and θ(t) = θ0 + βt

α < 0 ⇒ r(t) → 0 as t → ∞

α > 0 ⇒ r(t) → ∞ as t → ∞

α = 0 ⇒ r(t) ≡ r0 ∀ t
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z1

z
2 (c)

z1

z2 (b)

z1

z2
(a)

α < 0 α > 0 α = 0

Stable Focus Unstable Focus Center

x 1

x2(c)

x1

x 2(b)

x 1

x2
(a)
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Effect of Perturbations

A → A + δA (δA arbitrarily small)

The eigenvalues of a matrix depend continuously on its
parameters

A node (with distinct eigenvalues), a saddle or a focus is
structurally stable because the qualitative behavior remains
the same under arbitrarily small perturbations in A

A stable node with multiple eigenvalues could become a
stable node or a stable focus under arbitrarily small
perturbations in A
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A center is not structurally stable
[

µ 1

−1 µ

]

Eigenvalues = µ ± j

µ < 0 ⇒ Stable Focus

µ > 0 ⇒ Unstable Focus
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Qualitative Behavior Near
Equilibrium Points

&
Multiple Equilibria
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The qualitative behavior of a nonlinear system near an
equilibrium point can take one of the patterns we have seen
with linear systems. Correspondingly the equilibrium points
are classified as stable node, unstable node, saddle, stable
focus, unstable focus, or center

Can we determine the type of the equilibrium point of a
nonlinear system by linearization?
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Let p = (p1, p2) be an equilibrium point of the system

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2)

where f1 and f2 are continuously differentiable
Expand f1 and f2 in Taylor series about (p1, p2)

ẋ1 = f1(p1, p2) + a11(x1 − p1) + a12(x2 − p2) + H.O.T.

ẋ2 = f2(p1, p2) + a21(x1 − p1) + a22(x2 − p2) + H.O.T.

a11 =
∂f1(x1, x2)

∂x1

∣

∣

∣

∣

x=p

, a12 =
∂f1(x1, x2)

∂x2

∣

∣

∣

∣

x=p

a21 =
∂f2(x1, x2)

∂x1

∣

∣

∣

∣

x=p

, a22 =
∂f2(x1, x2)

∂x2

∣

∣

∣

∣

x=p

– p. 3/??



f1(p1, p2) = f2(p1, p2) = 0

y1 = x1 − p1 y2 = x2 − p2

ẏ1 = ẋ1 = a11y1 + a12y2 + H.O.T.

ẏ2 = ẋ2 = a21y1 + a22y2 + H.O.T.

ẏ ≈ Ay

A =







a11 a12

a21 a22






=







∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2







∣

∣

∣

∣

∣

∣

∣

x=p

=
∂f

∂x

∣

∣

∣

∣

x=p
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Eigenvalues of A Type of equilibrium point
of the nonlinear system

λ2 < λ1 < 0 Stable Node
λ2 > λ1 > 0 Unstable Node
λ2 < 0 < λ1 Saddle

α ± jβ, α < 0 Stable Focus
α ± jβ, α > 0 Unstable Focus

±jβ Linearization Fails
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Example

ẋ1 = −x2 − µx1(x
2

1
+ x2

2
)

ẋ2 = x1 − µx2(x
2

1
+ x2

2
)

x = 0 is an equilibrium point

∂f

∂x
=

[

−µ(3x2

1
+ x2

2
) −(1 + 2µx1x2)

(1 − 2µx1x2) −µ(x2

1
+ 3x2

2
)

]

A =
∂f

∂x

∣

∣

∣

∣

x=0

=

[

0 −1

1 0

]

x1 = r cos θ and x2 = r sin θ ⇒ ṙ = −µr3 and θ̇ = 1

Stable focus when µ > 0 and Unstable focus when µ < 0
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For a saddle point, we can use linearization to generate the
stable and unstable trajectories

Let the eigenvalues of the linearization be λ1 > 0 > λ2 and
the corresponding eigenvectors be v1 and v2

The stable and unstable trajectories will be tangent to the
stable and unstable eigenvectors, respectively, as they
approach the equilibrium point p

For the unstable trajectories use x0 = p ± αv1

For the stable trajectories use x0 = p ± αv2

α is a small positive number
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Multiple Equilibria

Example: Tunnel-diode circuit

ẋ1 = 0.5[−h(x1) + x2]

ẋ2 = 0.2(−x1 − 1.5x2 + 1.2)

h(x1) = 17.76x1−103.79x2

1
+229.62x3

1
−226.31x4

1
+83.72x5

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Q
2

Q3

Q
1

v
R

i
R

Q1 = (0.063, 0.758)

Q2 = (0.285, 0.61)

Q3 = (0.884, 0.21)
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∂f

∂x
=

[

−0.5h′(x1) 0.5

−0.2 −0.3

]

A1 =

[

−3.598 0.5

−0.2 −0.3

]

, Eigenvalues : − 3.57, −0.33

A2 =

[

1.82 0.5

−0.2 −0.3

]

, Eigenvalues : 1.77, −0.25

A3 =

[

−1.427 0.5

−0.2 −0.3

]

, Eigenvalues : − 1.33, −0.4

Q1 is a stable node; Q2 is a saddle; Q3 is a stable node
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x ’ = 0.5 ( − 17.76 x + 103.79 x2 − 229.62 x3 + 226.31 x4 − 83.72 x5 + y)
y ’ = 0.2 ( − x − 1.5 y + 1.2)                                               
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Hysteresis characteristics of the tunnel-diode circuit

u = E, y = vR

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Q
2

Q3

Q
1

v
R

i
R

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

E A
B

F
C

D

u

y
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Limit Cycles
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Oscillation: A system oscillates when it has a nontrivial
periodic solution

x(t + T ) = x(t), ∀ t ≥ 0

Linear (Harmonic) Oscillator:

ż =

[

0 −β

β 0

]

z

z1(t) = r0 cos(βt + θ0), z2(t) = r0 sin(βt + θ0)

r0 =
√

z2

1
(0) + z2

2
(0), θ0 = tan−1

[

z2(0)

z1(0)

]
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The linear oscillation is not practical because

It is not structurally stable. Infinitesimally small
perturbations may change the type of the equilibrium
point to a stable focus (decaying oscillation) or unstable
focus (growing oscillation)

The amplitude of oscillation depends on the initial
conditions

The same problems exist with oscillation of nonlinear
systems due to a center equilibrium point (e.g., pendulum
without friction)

– p. 3/??



Limit Cycles:

Example: Negative Resistance Oscillator

1

C
iC �	�	�	�	LiL ResistiveElement

i +
�v

(a)
CC�� CC��

��XX

v

(b)

i = h(v)
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ẋ1 = x2

ẋ2 = −x1 − εh′(x1)x2

There is a unique equilibrium point at the origin

A =
∂f

∂x

∣

∣

∣

∣

x=0

=







0 1

−1 −εh′(0)







λ2 + εh′(0)λ + 1 = 0

h′(0) < 0 ⇒ Unstable Focus or Unstable Node

– p. 5/??



Energy Analysis:

E = 1

2
Cv2

C + 1

2
Li2L

vC = x1 and iL = −h(x1) −
1

ε
x2

E = 1

2
C{x2

1
+ [εh(x1) + x2]

2}

Ė = C{x1ẋ1 + [εh(x1) + x2][εh′(x1)ẋ1 + ẋ2]}

= C{x1x2 + [εh(x1) + x2][εh′(x1)x2 − x1 − εh′(x1)x2]}

= C[x1x2 − εx1h(x1) − x1x2]

= −εCx1h(x1)

– p. 6/??



x1
−a

b

Ė = −εCx1h(x1)
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Example: Van der Pol Oscillator

ẋ1 = x2

ẋ2 = −x1 + ε(1 − x2

1
)x2

−2 0 2 4
−3

−2

−1

0

1

2

3

(b)

x
1

x
2

−2 0 2 4

−2

−1

0

1

2

3

4

(a)

x
1

x2

ε = 0.2 ε = 1
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ż1 =
1

ε
z2

ż2 = −ε(z1 − z2 + 1

3
z3

2
)

−2 0 2
−3

−2

−1

0

1

2

3

(b)

z1

z
2

−5 0 5 10

−5

0

5

10

(a)

x1

x
2

ε = 5
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x
1

x2

(a)

x
1

x
2

(b)

Stable Limit Cycle Unstable Limit Cycle
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Example: Wien-Bridge Oscillator

1

C2v2+� PP���������PPPPPPPP R2
��BBB BBB BBB��� ��� ��R1 C1v1+ �s

"!# g(v2)+�

Equivalent Circuit

– p. 11/??



State variables x1 = v1 and x2 = v2

ẋ1 =
1

C1R1

[−x1 + x2 − g(x2)]

ẋ2 = −
1

C2R1

[−x1 + x2 − g(x2)] −
1

C2R2

x2

There is a unique equilibrium point at x = 0

Numerical data: C1 = C2 = R1 = R2 = 1

g(v) = 3.234v − 2.195v3 + 0.666v5

– p. 12/??



x ’ = − x + y − (3.234 y − 2.195 y3 + 0.666 y5)         
y ’ = − ( − x + y − (3.234 y − 2.195 y3 + 0.666 y5)) − y
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−0.6

−0.4
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1

x

y
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x ’ = − x + y − (3.234 y − 2.195 y3 + 0.666 y5)         
y ’ = − ( − x + y − (3.234 y − 2.195 y3 + 0.666 y5)) − y
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Bifurcation
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Bifurcation is a change in the equilibrium points or periodic
orbits, or in their stability properties, as a parameter is
varied

Example

ẋ1 = µ − x2

1

ẋ2 = −x2

Find the equilibrium points and their types for different
values of µ

For µ > 0 there are two equilibrium points at (
√

µ, 0) and
(−√

µ, 0)

– p. 2/??



Linearization at (
√

µ, 0):
[

−2
√

µ 0

0 −1

]

(
√

µ, 0) is a stable node

Linearization at (−√
µ, 0):

[

2
√

µ 0

0 −1

]

(−√
µ, 0) is a saddle

– p. 3/??



ẋ1 = µ − x2

1
, ẋ2 = −x2

No equilibrium points when µ < 0

As µ decreases, the saddle and node approach each other,
collide at µ = 0, and disappear for µ < 0

x
1

x
2

x
2

x
1

x
1

x
2

µ > 0 µ = 0 µ < 0
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µ is called the bifurcation parameter and µ = 0 is the
bifurcation point

Bifurcation Diagram

µ
(a) Saddle−node bifurcation

– p. 5/??



Example
ẋ1 = µx1 − x2

1
, ẋ2 = −x2

Two equilibrium points at (0, 0) and (µ, 0)

The Jacobian at (0, 0) is

[

µ 0

0 −1

]

(0, 0) is a stable node for µ < 0 and a saddle for µ > 0

The Jacobian at (µ, 0) is

[

−µ 0

0 −1

]

(µ, 0) is a saddle for µ < 0 and a stable node for µ > 0
An eigenvalue crosses the origin as µ crosses zero
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While the equilibrium points persist through the bifurcation
point µ = 0, (0, 0) changes from a stable node to a saddle
and (µ, 0) changes from a saddle to a stable node

µ
(a) Saddle−node bifurcation

µ
(b) Transcritical bifurcation

dangerous or hard safe or soft
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Example
ẋ1 = µx1 − x3

1
, ẋ2 = −x2

For µ < 0, there is a stable node at the origin

For µ > 0, there are three equilibrium points: a saddle at
(0, 0) and stable nodes at (

√
µ, 0), and (−√

µ, 0)

µ
(c) Supercritical pitchfork bifurcation

– p. 8/??



Example
ẋ1 = µx1 + x3

1
, ẋ2 = −x2

For µ < 0, there are three equilibrium points: a stable node
at (0, 0) and two saddles at (±√−µ, 0)

For µ > 0, there is a saddle at (0, 0)

µ
(d) Subcritical pitchfork bifurcation
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Notice the difference between supercritical and subcritical
pitchfork bifurcations

µ
(c) Supercritical pitchfork bifurcation

µ
(d) Subcritical pitchfork bifurcation

safe or soft dangerous or hard

– p. 10/??



Example: Tunnel diode Circuit

ẋ1 =
1

C
[−h(x1) + x2]

ẋ2 =
1

L
[−x1 − Rx2 + µ]

A B

x
2
 = h(x

1
)

x
1

x
2

(a)
A B µ

(b)

– p. 11/??



Example

ẋ1 = x1(µ − x2

1
− x2

2
) − x2

ẋ2 = x2(µ − x2

1
− x2

2
) + x1

There is a unique equilibrium point at the origin

Linearization:

[

µ −1

1 µ

]

Stable focus for µ < 0, and unstable focus for µ > 0

A pair of complex eigenvalues cross the imaginary axis as
µ crosses zero

– p. 12/??



ṙ = µr − r3 and θ̇ = 1

For µ > 0, there is a stable limit cycle at r =
√

µ

x
2

x
1

x
2

x
1

µ < 0 µ > 0

Supercritical Hopf bifurcation

– p. 13/??



Example

ẋ1 = x1

[

µ + (x2

1
+ x2

2
) − (x2

1
+ x2

2
)2

]

− x2

ẋ2 = x2

[

µ + (x2

1
+ x2

2
) − (x2

1
+ x2

2
)2

]

+ x1

There is a unique equilibrium point at the origin

Linearization:

[

µ −1

1 µ

]

Stable focus for µ < 0, and unstable focus for µ > 0

A pair of complex eigenvalues cross the imaginary axis as
µ crosses zero
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ṙ = µr + r3 − r5 and θ̇ = 1

Sketch of µr + r3 − r5:

r r

µ < 0 µ > 0

For small |µ|, the stable limit cycles are approximated by
r = 1, while the unstable limit cycle for µ < 0 is
approximated by r =

√

|µ|

– p. 15/??



As µ increases from negative to positive values, the stable
focus at the origin merges with the unstable limit cycle and
bifurcates into unstable focus

Subcritical Hopf bifurcation

µ
(e) Supercritical Hopf bifurcation

µ
(f) Subcrtitical Hopf bifurcation

safe or soft dangerous or hard

– p. 16/??



All six types of bifurcation occur in the vicinity of an
equilibrium point. They are called local bifurcations

Example of Global Bifurcation

ẋ1 = x2

ẋ2 = µx2 + x1 − x2

1
+ x1x2

There are two equilibrium points at (0, 0) and (1, 0). By
linearization, we can see that (0, 0) is always a saddle,
while (1, 0) is an unstable focus for −1 < µ < 1

Limit analysis to the range −1 < µ < 1

– p. 17/??



x
2

x
1

µ=−0.95

x
1

x
2

µ=−0.88

x
1

x
2

µ=−0.8645

x
1

x
2

µ=−0.8

Saddle–connection (or homoclinic) bifurcation
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Stability of Equilibrium Points
Basic Concepts & Linearization

– p. 1/??



ẋ = f(x)

f is locally Lipschitz over a domain D ⊂ Rn

Suppose x̄ ∈ D is an equilibrium point; that is, f(x̄) = 0

Characterize and study the stability of x̄

For convenience, we state all definitions and theorems for
the case when the equilibrium point is at the origin of Rn;
that is, x̄ = 0. No loss of generality

y = x − x̄

ẏ = ẋ = f(x) = f(y + x̄)
def
= g(y), where g(0) = 0

– p. 2/??



Definition: The equilibrium point x = 0 of ẋ = f(x) is

stable if for each ε > 0 there is δ > 0 (dependent on ε)
such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ 0

unstable if it is not stable

asymptotically stable if it is stable and δ can be chosen
such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

– p. 3/??



First-Order Systems (n = 1)

The behavior of x(t) in the neighborhood of the origin can
be determined by examining the sign of f(x)

The ε–δ requirement for stability is violated if xf(x) > 0 on
either side of the origin

f(x)

x

f(x)

x

f(x)

x

Unstable Unstable Unstable
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The origin is stable if and only if xf(x) ≤ 0 in some
neighborhood of the origin

f(x)

x

f(x)

x

f(x)

x

Stable Stable Stable
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The origin is asymptotically stable if and only if xf(x) < 0
in some neighborhood of the origin

f(x)

x−a b

f(x)

x

(a) (b)

Asymptotically Stable Globally Asymptotically Stable
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Definition: Let the origin be an asymptotically stable
equilibrium point of the system ẋ = f(x), where f is a
locally Lipschitz function defined over a domain D ⊂ Rn

( 0 ∈ D)

The region of attraction (also called region of
asymptotic stability, domain of attraction, or basin) is the
set of all points x0 in D such that the solution of

ẋ = f(x), x(0) = x0

is defined for all t ≥ 0 and converges to the origin as t

tends to infinity

The origin is said to be globally asymptotically stable if
the region of attraction is the whole space Rn
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Second-Order Systems (n = 2)

Type of equilibrium point Stability Property
Center

Stable Node
Stable Focus

Unstable Node
Unstable Focus

Saddle
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Example: Tunnel Diode Circuit

x ’ = 0.5 ( − 17.76 x + 103.79 x2 − 229.62 x3 + 226.31 x4 − 83.72 x5 + y)
y ’ = 0.2 ( − x − 1.5 y + 1.2)                                               
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Example: Pendulum Without Friction

x ’ = y          
y ’ = − 10 sin(x)
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Example: Pendulum With Friction

x ’ = y              
y ’ = − 10 sin(x) − y
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Linear Time-Invariant Systems

ẋ = Ax

x(t) = exp(At)x(0)

P −1AP = J = block diag[J1, J2, . . . , Jr]

Ji =























λi 1 0 . . . . . . 0

0 λi 1 0 . . . 0
... . . . ...
... . . . 0
... . . . 1

0 . . . . . . . . . 0 λi























m×m
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exp(At) = P exp(Jt)P −1 =
r

∑

i=1

mi
∑

k=1

tk−1 exp(λit)Rik

mi is the order of the Jordan block Ji

Re[λi] < 0 ∀ i ⇔ Asymptotically Stable

Re[λi] > 0 for some i ⇒ Unstable

Re[λi] ≤ 0 ∀ i & mi > 1 for Re[λi] = 0 ⇒ Unstable

Re[λi] ≤ 0 ∀ i & mi = 1 for Re[λi] = 0 ⇒ Stable

If an n × n matrix A has a repeated eigenvalue λi of
algebraic multiplicity qi, then the Jordan blocks of λi have
order one if and only if rank(A − λiI) = n − qi

– p. 13/??



Theorem: The equilibrium point x = 0 of ẋ = Ax is stable if
and only if all eigenvalues of A satisfy Re[λi] ≤ 0 and for
every eigenvalue with Re[λi] = 0 and algebraic multiplicity
qi ≥ 2, rank(A − λiI) = n − qi, where n is the dimension
of x. The equilibrium point x = 0 is globally asymptotically
stable if and only if all eigenvalues of A satisfy Re[λi] < 0

When all eigenvalues of A satisfy Re[λi] < 0, A is called a
Hurwitz matrix

When the origin of a linear system is asymptotically stable,
its solution satisfies the inequality

‖x(t)‖ ≤ k‖x(0)‖e−λt, ∀ t ≥ 0

k ≥ 1, λ > 0
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Exponential Stability

Definition: The equilibrium point x = 0 of ẋ = f(x) is said
to be exponentially stable if

‖x(t)‖ ≤ k‖x(0)‖e−λt, ∀ t ≥ 0

k ≥ 1, λ > 0, for all ‖x(0)‖ < c

It is said to be globally exponentially stable if the inequality
is satisfied for any initial state x(0)

Exponential Stability ⇒ Asymptotic Stability

– p. 15/??



Example
ẋ = −x3

The origin is asymptotically stable

x(t) =
x(0)

√

1 + 2tx2(0)

x(t) does not satisfy |x(t)| ≤ ke−λt|x(0)| because

|x(t)| ≤ ke−λt|x(0)| ⇒
e2λt

1 + 2tx2(0)
≤ k2

Impossible because lim
t→∞

e2λt

1 + 2tx2(0)
= ∞
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Linearization
ẋ = f(x), f(0) = 0

f is continuously differentiable over D = {‖x‖ < r}

J(x) =
∂f

∂x
(x)

h(σ) = f(σx) for 0 ≤ σ ≤ 1

h′(σ) = J(σx)x

h(1) − h(0) =

∫ 1

0

h′(σ) dσ, h(0) = f(0) = 0

f(x) =

∫ 1

0

J(σx) dσ x

– p. 17/??



f(x) =

∫ 1

0

J(σx) dσ x

Set A = J(0) and add and subtract Ax

f(x) = [A+G(x)]x, where G(x) =

∫ 1

0

[J(σx)−J(0)] dσ

G(x) → 0 as x → 0

This suggests that in a small neighborhood of the origin we
can approximate the nonlinear system ẋ = f(x) by its
linearization about the origin ẋ = Ax
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Theorem:

The origin is exponentially stable if and only if
Re[λi] < 0 for all eigenvalues of A

The origin is unstable if Re[λi] > 0 for some i

Linearization fails when Re[λi] ≤ 0 for all i, with
Re[λi] = 0 for some i

Example
ẋ = ax3

A =
∂f

∂x

∣

∣

∣

∣

x=0

= 3ax2
∣

∣

x=0
= 0

Stable if a = 0; Asymp stable if a < 0; Unstable if a > 0
When a < 0, the origin is not exponentially stable
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Lyapunov Stability
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Let V (x) be a continuously differentiable function defined in
a domain D ⊂ Rn; 0 ∈ D. The derivative of V along the
trajectories of ẋ = f(x) is

V̇ (x) =

n
∑

i=1

∂V

∂xi
ẋi =

n
∑

i=1

∂V

∂xi
fi(x)

=
[

∂V
∂x1

, ∂V
∂x2

, . . . , ∂V
∂xn

]













f1(x)

f2(x)
...

fn(x)













=
∂V

∂x
f(x)

– p. 2/10



If φ(t; x) is the solution of ẋ = f(x) that starts at initial
state x at time t = 0, then

V̇ (x) =
d

dt
V (φ(t; x))

∣

∣

∣

∣

t=0

If V̇ (x) is negative, V will decrease along the solution of
ẋ = f(x)

If V̇ (x) is positive, V will increase along the solution of
ẋ = f(x)
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Lyapunov’s Theorem:

If there is V (x) such that

V (0) = 0 and V (x) > 0, ∀ x ∈ D/{0}

V̇ (x) ≤ 0, ∀ x ∈ D

then the origin is a stable

Moreover, if

V̇ (x) < 0, ∀ x ∈ D/{0}

then the origin is asymptotically stable
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Furthermore, if V (x) > 0, ∀ x 6= 0,

‖x‖ → ∞ ⇒ V (x) → ∞

and V̇ (x) < 0, ∀ x 6= 0, then the origin is globally
asymptotically stable

Proof: D
B

r

Ωβ

Bδ

0 < r ≤ ε, Br = {‖x‖ ≤ r}

α = min
‖x‖=r

V (x) > 0

0 < β < α

Ωβ = {x ∈ Br | V (x) ≤ β}

‖x‖ ≤ δ ⇒ V (x) < β
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Solutions starting in Ωβ stay in Ωβ because V̇ (x) ≤ 0 in Ωβ

x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br

‖x(0)‖ < δ ⇒ ‖x(t)‖ < r ≤ ε, ∀ t ≥ 0

⇒ The origin is stable

Now suppose V̇ (x) < 0 ∀ x ∈ D/{0}. V (x(t) is
monotonically decreasing and V (x(t)) ≥ 0

lim
t→∞

V (x(t)) = c ≥ 0

lim
t→∞

V (x(t)) = c ≥ 0 Show that c = 0

Suppose c > 0. By continuity of V (x), there is d > 0 such
that Bd ⊂ Ωc. Then, x(t) lies outside Bd for all t ≥ 0
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γ = − max
d≤‖x‖≤r

V̇ (x)

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ )) dτ ≤ V (x(0)) − γt

This inequality contradicts the assumption c > 0

⇒ The origin is asymptotically stable

The condition ‖x‖ → ∞ ⇒ V (x) → ∞ implies that the
set Ωc = {x ∈ Rn | V (x) ≤ c} is compact for every c > 0.
This is so because for any c > 0, there is r > 0 such that
V (x) > c whenever ‖x‖ > r. Thus, Ωc ⊂ Br. All solutions
starting Ωc will converge to the origin. For any point
p ∈ Rn, choosing c = V (p) ensures that p ∈ Ωc

⇒ The origin is globally asymptotically stable
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Terminology
V (0) = 0, V (x) ≥ 0 for x 6= 0 Positive semidefinite
V (0) = 0, V (x) > 0 for x 6= 0 Positive definite
V (0) = 0, V (x) ≤ 0 for x 6= 0 Negative semidefinite
V (0) = 0, V (x) < 0 for x 6= 0 Negative definite

‖x‖ → ∞ ⇒ V (x) → ∞ Radially unbounded

Lyapunov’ Theorem: The origin is stable if there is a
continuously differentiable positive definite function V (x) so
that V̇ (x) is negative semidefinite, and it is asymptotically
stable if V̇ (x) is negative definite. It is globally
asymptotically stable if the conditions for asymptotic
stability hold globally and V (x) is radially unbounded
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A continuously differentiable function V (x) satisfying the
conditions for stability is called a Lyapunov function. The
surface V (x) = c, for some c > 0, is called a Lyapunov
surface or a level surface

V (x) = c 1

c 2

c 3

c 1<c 2<c 3
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Why do we need the radial unboundedness condition to
show global asymptotic stability?
It ensures that Ωc = {x ∈ Rn | V (x) ≤ c} is bounded for
every c > 0
Without it Ωc might not bounded for large c
Example

V (x) =
x2

1

1 + x2

1

+ x2

2

cc
c
c
c
c
c
c
c
c
c
c
c
c

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
x 1

x 2

– p. 10/10



Nonlinear Systems and Control
Lecture # 9

Lyapunov Stability
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Quadratic Forms

V (x) = xT Px =
n

∑

i=1

n
∑

j=1

pijxixj , P = P T

λmin(P )‖x‖2 ≤ xT Px ≤ λmax(P )‖x‖2

P ≥ 0 (Positive semidefinite) if and only if λi(P ) ≥ 0 ∀i

P > 0 (Positive definite) if and only if λi(P ) > 0 ∀i

V (x) is positive definite if and only if P is positive definite
V (x) is positive semidefinite if and only if P is positive
semidefinite
P > 0 if and only if all the leading principal minors of P are
positive
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Linear Systems
ẋ = Ax

V (x) = xT Px, P = P T > 0

V̇ (x) = xT Pẋ + ẋT Px = xT (PA + AT P )x
def
= −xT Qx

If Q > 0, then A is Hurwitz

Or choose Q > 0 and solve the Lyapunov equation

PA + AT P = −Q

If P > 0, then A is Hurwitz

Matlab: P = lyap(A′, Q)
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Theorem A matrix A is Hurwitz if and only if for any
Q = QT > 0 there is P = P T > 0 that satisfies the
Lyapunov equation

PA + AT P = −Q

Moreover, if A is Hurwitz, then P is the unique solution

Idea of the proof: Sufficiency follows from Lyapunov’s
theorem. Necessity is shown by verifying that

P =

∫ ∞

0

exp(AT t)Q exp(At) dt

is positive definite and satisfies the Lyapunov equation
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Linearization

ẋ = f(x) = [A + G(x)]x

G(x) → 0 as x → 0

Suppose A is Hurwitz. Choose Q = QT > 0 and solve the
Lyapunov equation PA + AT P = −Q for P . Use
V (x) = xT Px as a Lyapunov function candidate for
ẋ = f(x)

V̇ (x) = xT Pf(x) + fT (x)Px

= xT P [A + G(x)]x + xT [AT + GT (x)]Px

= xT (PA + AT P )x + 2xT PG(x)x

= −xT Qx + 2xT PG(x)x
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V̇ (x) ≤ −xT Qx + 2‖P‖ ‖G(x)‖ ‖x‖2

For any γ > 0, there exists r > 0 such that

‖G(x)‖ < γ, ∀ ‖x‖ < r

xT Qx ≥ λmin(Q)‖x‖2 ⇔ −xT Qx ≤ −λmin(Q)‖x‖2

V̇ (x) < −[λmin(Q) − 2γ‖P‖]‖x‖2, ∀ ‖x‖ < r

Choose

γ <
λmin(Q)

2‖P‖
V (x) = xT Px is a Lyapunov function for ẋ = f(x)
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We can use V (x) = xT Px to estimate the region of
attraction

Suppose V̇ (x) < 0, ∀ 0 < ‖x‖ < r

Take c = min
‖x‖=r

xT Px = λmin(P )r2

{xT Px < c} ⊂ {‖x‖ < r}
All trajectories starting in the set {xT Px < c} approach the
origin as t tends to ∞. Hence, the set {xT Px < c} is a
subset of the region of attraction (an estimate of the region
of attraction)
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Example

ẋ1 = −x2

ẋ2 = x1 + (x2

1
− 1)x2

A =
∂f

∂x

∣

∣

∣

∣

x=0

=

[

0 −1

1 −1

]

has eigenvalues (−1 ± j
√

3)/2. Hence the origin is
asymptotically stable

Take Q = I, PA+AT P = −I ⇒ P =

[

1.5 −0.5

−0.5 1

]

λmin(P ) = 0.691
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V (x) = xT Px = 1.5x2

1
− x1x2 + x2

2

V̇ (x) = (3x1 − x2)(−x2) + (−x1 + 2x2)[x1 + (x2

1
− 1)x2]

= −(x2

1
+ x2

2
) − (x3

1
x2 − 2x2

1
x2

2
)

V̇ (x) ≤ −‖x‖2+|x1| |x1x2| |x1−2x2| ≤ −‖x‖2+

√
5

2
‖x‖4

where |x1| ≤ ‖x‖, |x1x2| ≤ 1

2
‖x‖2, |x1 − 2x2| ≤

√
5‖x‖

V̇ (x) < 0 for 0 < ‖x‖2 <
2

√
5

def
= r2

Take c = λmin(P )r2 = 0.691 × 2
√

5
= 0.618

{V (x) < c} is an estimate of the region of attraction
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Example:
ẋ = −g(x)

g(0) = 0; xg(x) > 0, ∀ x 6= 0 and x ∈ (−a, a)

V (x) =

∫ x

0

g(y) dy

V̇ (x) =
∂V

∂x
[−g(x)] = −g2(x) < 0, ∀ x ∈ (−a, a), x 6= 0

The origin is asymptotically stable

If xg(x) > 0 for all x 6= 0, use

V (x) = 1

2
x2 +

∫ x

0

g(y) dy
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V (x) = 1

2
x2 +

∫ x

0

g(y) dy

is positive definite for all x and radially unbounded since
V (x) ≥ 1

2
x2

V̇ (x) = −xg(x) − g2(x) < 0, ∀ x 6= 0

The origin is globally asymptotically stable
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Example: Pendulum equation without friction

ẋ1 = x2

ẋ2 = − a sin x1

V (x) = a(1 − cos x1) + 1

2
x2

2

V (0) = 0 and V (x) is positive definite over the domain
−2π < x1 < 2π

V̇ (x) = aẋ1 sin x1 + x2ẋ2 = ax2 sin x1 − ax2 sin x1 = 0

The origin is stable

Since V̇ (x) ≡ 0, the origin is not asymptotically stable
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Example: Pendulum equation with friction

ẋ1 = x2

ẋ2 = − a sin x1 − bx2

V (x) = a(1 − cos x1) +
1

2
x2

2

V̇ (x) = aẋ1 sin x1 + x2ẋ2 = − bx2

2

The origin is stable

V̇ (x) is not negative definite because V̇ (x) = 0 for x2 = 0
irrespective of the value of x1
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The conditions of Lyapunov’s theorem are only sufficient.
Failure of a Lyapunov function candidate to satisfy the
conditions for stability or asymptotic stability does not mean
that the equilibrium point is not stable or asymptotically
stable. It only means that such stability property cannot be
established by using this Lyapunov function candidate

Try

V (x) = 1

2
xT Px + a(1 − cos x1)

= 1

2
[x1 x2]

[

p11 p12

p12 p22

] [

x1

x2

]

+ a(1 − cos x1)

p11 > 0, p11p22 − p2

12
> 0
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V̇ (x) = (p11x1 + p12x2 + a sin x1) x2

+ (p12x1 + p22x2) (−a sin x1 − bx2)

= a(1 − p22)x2 sin x1 − ap12x1 sin x1

+ (p11 − p12b) x1x2 + (p12 − p22b) x2

2

p22 = 1, p11 = bp12 ⇒ 0 < p12 < b, Take p12 = b/2

V̇ (x) = − 1

2
abx1 sin x1 − 1

2
bx2

2

D = {x ∈ R2 | |x1| < π}

V (x) is positive definite and V̇ (x) is negative definite over D
The origin is asymptotically stable

Read about the variable gradient method in the textbook
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Example: Pendulum equation with friction

ẋ1 = x2

ẋ2 = − a sin x1 − bx2

V (x) = a(1 − cos x1) +
1

2
x2

2

V̇ (x) = aẋ1 sin x1 + x2ẋ2 = − bx2
2

The origin is stable. V̇ (x) is not negative definite because
V̇ (x) = 0 for x2 = 0 irrespective of the value of x1

However, near the origin, the solution cannot stay
identically in the set {x2 = 0}

– p. 2/16



Definitions: Let x(t) be a solution of ẋ = f(x)

A point p is said to be a positive limit point of x(t) if there is
a sequence {tn}, with limn→∞ tn = ∞, such that
x(tn) → p as n → ∞

The set of all positive limit points of x(t) is called the
positive limit set of x(t); denoted by L+

If x(t) approaches an asymptotically stable equilibrium
point x̄, then x̄ is the positive limit point of x(t) and L+ = x̄

A stable limit cycle is the positive limit set of every solution
starting sufficiently near the limit cycle
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A set M is an invariant set with respect to ẋ = f(x) if

x(0) ∈ M ⇒ x(t) ∈ M, ∀ t ∈ R

Examples:

Equilibrium points

Limit Cycles

A set M is a positively invariant set with respect to
ẋ = f(x) if

x(0) ∈ M ⇒ x(t) ∈ M, ∀ t ≥ 0

Example: The set Ωc = {V (x) ≤ c} with V̇ (x) ≤ 0 in Ωc
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The distance from a point p to a set M is defined by

dist(p, M) = inf
x∈M

‖p − x‖

x(t) approaches a set M as t approaches infinity, if for
each ε > 0 there is T > 0 such that

dist(x(t), M) < ε, ∀ t > T

Example: every solution x(t) starting sufficiently near a
stable limit cycle approaches the limit cycle as t → ∞

Notice, however, that x(t) does converge to any specific
point on the limit cycle
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Lemma: If a solution x(t) of ẋ = f(x) is bounded and
belongs to D for t ≥ 0, then its positive limit set L+ is a
nonempty, compact, invariant set. Moreover, x(t)

approaches L+ as t → ∞

LaSalle’s theorem: Let f(x) be a locally Lipschitz function
defined over a domain D ⊂ Rn and Ω ⊂ D be a compact
set that is positively invariant with respect to ẋ = f(x). Let
V (x) be a continuously differentiable function defined over
D such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in
Ω where V̇ (x) = 0, and M be the largest invariant set in E.
Then every solution starting in Ω approaches M as t → ∞
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Proof:

V̇ (x) ≤ in Ω ⇒ V (x(t)) is a decreasing

V (x) is continuous in Ω ⇒ V (x) ≥ b = min
x∈Ω

V (x)

⇒ lim
t→∞

V (x(t)) = a

x(t) ∈ Ω ⇒ x(t) is bounded ⇒ L+ exists

Moreover, L+ ⊂ Ω and x(t) approaches L+ as t → ∞

For any p ∈ L+, there is {tn} with limn→∞ tn = ∞ such
that x(tn) → p as n → ∞

V (x) is continuous ⇒ V (p) = lim
n→∞

V (x(tn)) = a
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V (x) = a on L+ and L+ invariant ⇒ V̇ (x) = 0, ∀ x ∈ L+

L+ ⊂ M ⊂ E ⊂ Ω

x(t) approaches L+ ⇒ x(t) approaches M (as t → ∞)
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Theorem: Let f(x) be a locally Lipschitz function defined
over a domain D ⊂ Rn; 0 ∈ D. Let V (x) be a continuously
differentiable positive definite function defined over D such
that V̇ (x) ≤ 0 in D. Let S = {x ∈ D | V̇ (x) = 0}

If no solution can stay identically in S, other than the
trivial solution x(t) ≡ 0, then the origin is asymptotically
stable

Moreover, if Γ ⊂ D is compact and positively invariant,
then it is a subset of the region of attraction

Furthermore, if D = Rn and V (x) is radially
unbounded, then the origin is globally asymptotically
stable
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Example:

ẋ1 = x2

ẋ2 = −h1(x1) − h2(x2)

hi(0) = 0, yhi(y) > 0, for 0 < |y| < a

V (x) =

∫ x1

0

h1(y) dy + 1

2
x2

2

D = {−a < x1 < a, −a < x2 < a}

V̇ (x) = h1(x1)x2+x2[−h1(x1)−h2(x2)] = −x2h2(x2) ≤ 0

V̇ (x) = 0 ⇒ x2h2(x2) = 0 ⇒ x2 = 0

S = {x ∈ D | x2 = 0}
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ẋ1 = x2, ẋ2 = −h1(x1) − h2(x2)

x2(t) ≡ 0 ⇒ ẋ2(t) ≡ 0 ⇒ h1(x1(t)) ≡ 0 ⇒ x1(t) ≡ 0

The only solution that can stay identically in S is x(t) ≡ 0

Thus, the origin is asymptotically stable

Suppose a = ∞ and
∫ y
0

h1(z) dz → ∞ as |y| → ∞

Then, D = R2 and V (x) =
∫ x1

0
h1(y) dy + 1

2
x2

2 is radially
unbounded. S = {x ∈ R2 | x2 = 0} and the only solution
that can stay identically in S is x(t) ≡ 0

The origin is globally asymptotically stable
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Example: m-link Robot Manipulator
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Two-link Robot Manipulator
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M(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) = u

q is an m-dimensional vector of joint positions

u is an m-dimensional control (torque) inputs

M = MT > 0 is the inertia matrix

C(q, q̇)q̇ accounts for centrifugal and Coriolis forces

(Ṁ − 2C)T = −(Ṁ − 2C)

Dq̇ accounts for viscous damping; D = DT ≥ 0

g(q) accounts for gravity forces; g(q) = [∂P (q)/∂q]T

P (q) is the total potential energy of the links due to gravity
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Investigate the use of the (PD plus gravity compensation)
control law

u = g(q) − Kp(q − q∗) − Kd q̇

to stabilize the robot at a desired position q∗, where Kp and
Kd are symmetric positive definite matrices

e = q − q∗, ė = q̇

Më = Mq̈

= −C q̇ − D q̇ − g(q) + u

= −C q̇ − D q̇ − Kp(q − q∗) − Kd q̇

= −C ė − D ė − Kp e − Kd ė
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Më = −C ė − D ė − Kp e − Kd ė

V = 1

2
ėT M(q)ė + 1

2
eT Kpe

V̇ = ėT Më + 1

2
ėT Ṁė + eT Kpė

= −ėT Cė − ėT Dė − ėT Kpe − ėT Kdė

+ 1

2
ėT Ṁė + eT Kpė

= 1

2
ėT (Ṁ − 2C)ė − ėT (Kd + D)ė

= −ėT (Kd + D)ė ≤ 0
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(Kd + D) is positive definite

V̇ = −ėT (Kd + D)ė = 0 ⇒ ė = 0

Më = −C ė − D ė − Kp e − Kd ė

ė(t) ≡ 0 ⇒ ë(t) ≡ 0 ⇒ Kpe(t) ≡ 0 ⇒ e(t) ≡ 0

By LaSalle’s theorem the origin (e = 0, ė = 0) is globally
asymptotically stable
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Converse Lyapunov Theorem–Exponential Stability

Let x = 0 be an exponentially stable equilibrium point for
the system ẋ = f(x), where f is continuously differentiable
on D = {‖x‖ < r}. Let k, λ, and r0 be positive constants
with r0 < r/k such that

‖x(t)‖ ≤ k‖x(0)‖e−λt, ∀ x(0) ∈ D0, ∀ t ≥ 0

where D0 = {‖x‖ < r0}. Then, there is a continuously
differentiable function V (x) that satisfies the inequalities
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c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

∂V

∂x
f(x) ≤ −c3‖x‖2

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

≤ c4‖x‖

for all x ∈ D0, with positive constants c1, c2, c3, and c4
Moreover, if f is continuously differentiable for all x, globally
Lipschitz, and the origin is globally exponentially stable,
then V (x) is defined and satisfies the aforementioned
inequalities for all x ∈ Rn
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Idea of the proof: Let ψ(t;x) be the solution of

ẏ = f(y), y(0) = x

Take

V (x) =

∫ δ

0
ψT (t;x) ψ(t;x) dt, δ > 0
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Example: Consider the system ẋ = f(x) where f is
continuously differentiable in the neighborhood of the origin
and f(0) = 0. Show that the origin is exponentially stable
only if A = [∂f/∂x](0) is Hurwitz

f(x) = Ax+G(x)x, G(x) → 0 as x → 0

Given any L > 0, there is r1 > 0 such that

‖G(x)‖ ≤ L, ∀ ‖x‖ < r1

Because the origin of ẋ = f(x) is exponentially stable, let
V (x) be the function provided by the converse Lyapunov
theorem over the domain {‖x‖ < r0}. Use V (x) as a
Lyapunov function candidate for ẋ = Ax
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∂V

∂x
Ax =

∂V

∂x
f(x) −

∂V

∂x
G(x)x

≤ −c3‖x‖2 + c4L‖x‖2

= −(c3 − c4L)‖x‖2

Take L < c3/c4, γ
def
= (c3 − c4L) > 0 ⇒

∂V

∂x
Ax ≤ −γ‖x‖2, ∀ ‖x‖ < min{r0, r1}

The origin of ẋ = Ax is exponentially stable
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Converse Lyapunov Theorem–Asymptotic Stability

Let x = 0 be an asymptotically stable equilibrium point for
ẋ = f(x), where f is locally Lipschitz on a domain
D ⊂ Rn that contains the origin. LetRA ⊂ D be the region
of attraction of x = 0. Then, there is a smooth, positive
definite function V (x) and a continuous, positive definite
function W (x), both defined for all x ∈ RA, such that

V (x) → ∞ as x → ∂RA

∂V

∂x
f(x) ≤ −W (x), ∀ x ∈ RA

and for any c > 0, {V (x) ≤ c} is a compact subset of RA
When RA = Rn, V (x) is radially unbounded
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Time-varying Systems

ẋ = f(t, x)

f(t, x) is piecewise continuous in t and locally Lipschitz in
x for all t ≥ 0 and all x ∈ D. The origin is an equilibrium
point at t = 0 if

f(t, 0) = 0, ∀ t ≥ 0

While the solution of the autonomous system

ẋ = f(x), x(t0) = x0

depends only on (t− t0), the solution of

ẋ = f(t, x), x(t0) = x0

may depend on both t and t0
– p. 8/18



Comparison Functions

A scalar continuous function α(r), defined for r ∈ [0, a)
is said to belong to class K if it is strictly increasing and
α(0) = 0. It is said to belong to class K∞ if it defined
for all r ≥ 0 and α(r) → ∞ as r → ∞

A scalar continuous function β(r, s), defined for
r ∈ [0, a) and s ∈ [0,∞) is said to belong to class KL
if, for each fixed s, the mapping β(r, s) belongs to class
K with respect to r and, for each fixed r, the mapping
β(r, s) is decreasing with respect to s and β(r, s) → 0
as s → ∞
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Example

α(r) = tan−1(r) is strictly increasing since
α′(r) = 1/(1 + r2) > 0. It belongs to class K, but not
to class K∞ since limr→∞ α(r) = π/2 < ∞

α(r) = rc, for any positive real number c, is strictly
increasing since α′(r) = crc−1 > 0. Moreover,
limr→∞ α(r) = ∞; thus, it belongs to class K∞

α(r) = min{r, r2} is continuous, strictly increasing,
and limr→∞ α(r) = ∞. Hence, it belongs to class K∞
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β(r, s) = r/(ksr + 1), for any positive real number k,
is strictly increasing in r since

∂β

∂r
=

1

(ksr + 1)2
> 0

and strictly decreasing in s since

∂β

∂s
=

−kr2

(ksr + 1)2
< 0

Moreover, β(r, s) → 0 as s → ∞. Therefore, it belongs
to class KL

β(r, s) = rce−s, for any positive real number c, belongs
to class KL
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Definition: The equilibrium point x = 0 of ẋ = f(t, x) is

uniformly stable if there exist a class K function α and a
positive constant c, independent of t0, such that

‖x(t)‖ ≤ α(‖x(t0)‖), ∀ t ≥ t0 ≥ 0, ∀ ‖x(t0)‖ < c

uniformly asymptotically stable if there exist a class KL
function β and a positive constant c, independent of t0,
such that

‖x(t)‖ ≤ β(‖x(t0)‖, t−t0), ∀ t ≥ t0 ≥ 0, ∀ ‖x(t0)‖ < c

globally uniformly asymptotically stable if the foregoing
inequality is satisfied for any initial state x(t0)
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exponentially stable if there exist positive constants c,
k, and λ such that

‖x(t)‖ ≤ k‖x(t0)‖e
−λ(t−t0), ∀ ‖x(t0)‖ < c

globally exponentially stable if the foregoing inequality
is satisfied for any initial state x(t0)
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Theorem: Let the origin x = 0 be an equilibrium point for
ẋ = f(t, x) and D ⊂ Rn be a domain containing x = 0.
Suppose f(t, x) is piecewise continuous in t and locally
Lipschitz in x for all t ≥ 0 and x ∈ D. Let V (t, x) be a
continuously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x)(1)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0(2)

for all t ≥ 0 and x ∈ D, where W1(x) and W2(x) are
continuous positive definite functions on D. Then, the origin
is uniformly stable
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Theorem: Suppose the assumptions of the previous
theorem are satisfied with

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x)

for all t ≥ 0 and x ∈ D, where W3(x) is a continuous
positive definite function on D. Then, the origin is uniformly
asymptotically stable. Moreover, if r and c are chosen such
that Br = {‖x‖ ≤ r} ⊂ D and c < min‖x‖=rW1(x), then
every trajectory starting in {x ∈ Br | W2(x) ≤ c} satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀ t ≥ t0 ≥ 0

for some class KL function β. Finally, if D = Rn and
W1(x) is radially unbounded, then the origin is globally
uniformly asymptotically stable

– p. 15/18



Theorem: Suppose the assumptions of the previous
theorem are satisfied with

k1‖x‖a ≤ V (t, x) ≤ k2‖x‖a

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −k3‖x‖a

for all t ≥ 0 and x ∈ D, where k1, k2, k3, and a are
positive constants. Then, the origin is exponentially stable.
If the assumptions hold globally, the origin will be globally
exponentially stable.
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Example:

ẋ = −[1 + g(t)]x3, g(t) ≥ 0, ∀ t ≥ 0

V (x) = 1
2x

2

V̇ (t, x) = −[1 + g(t)]x4 ≤ −x4, ∀ x ∈ R, ∀ t ≥ 0

The origin is globally uniformly asymptotically stable

Example:

ẋ1 = −x1 − g(t)x2

ẋ2 = x1 − x2

0 ≤ g(t) ≤ k and ġ(t) ≤ g(t), ∀ t ≥ 0
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V (t, x) = x2
1 + [1 + g(t)]x2

2

x2
1 + x2

2 ≤ V (t, x) ≤ x2
1 + (1 + k)x2

2, ∀ x ∈ R2

V̇ (t, x) = −2x2
1 + 2x1x2 − [2 + 2g(t) − ġ(t)]x2

2

2 + 2g(t) − ġ(t) ≥ 2 + 2g(t) − g(t) ≥ 2

V̇ (t, x) ≤ −2x2
1 + 2x1x2 − 2x2

2 = − xT

[

2 −1

−1 2

]

x

The origin is globally exponentially stable
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Nonlinear Systems and Control
Lecture # 13

Perturbed Systems
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Nominal System:

ẋ = f(x), f(0) = 0

Perturbed System:

ẋ = f(x) + g(t, x), g(t, 0) = 0

Case 1: The origin of the nominal system is exponentially
stable

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

∂V

∂x
f(x) ≤ −c3‖x‖2

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

≤ c4‖x‖
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Use V (x) as a Lyapunov function candidate for the
perturbed system

V̇ (t, x) =
∂V

∂x
f(x) +

∂V

∂x
g(t, x)

Assume that

‖g(t, x)‖ ≤ γ‖x‖, γ ≥ 0

V̇ (t, x) ≤ −c3‖x‖2 +

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

‖g(t, x)‖

≤ −c3‖x‖2 + c4γ‖x‖2
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γ <
c3

c4

V̇ (t, x) ≤ −(c3 − γc4)‖x‖2

The origin is an exponentially stable equilibrium point of the
perturbed system
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Example

ẋ1 = x2

ẋ2 = −4x1 − 2x2 + βx3

2
, β ≥ 0

ẋ = Ax + g(x)

A =

[

0 1

−4 −2

]

, g(x) =

[

0

βx3

2

]

The eigenvalues of A are −1 ± j
√

3

PA + AT P = −I ⇒ P =







3

2

1

8

1

8

5

16







– p. 5/??



V (x) = xT Px,
∂V

∂x
Ax = −xT x

c3 = 1, c4 = 2 ‖P‖ = 2λmax(P ) = 2 × 1.513 = 3.026

‖g(x)‖ = β|x2|3

g(x) satisfies the bound ‖g(x)‖ ≤ γ‖x‖ over compact sets
of x. Consider the compact set

Ωc = {V (x) ≤ c} = {xT Px ≤ c}, c > 0

k2 = max
xT P x≤c

|x2| = max
xT P x≤c

|[0 1]x|
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Fact:
max

xT P x≤c
‖Lx‖ =

√
c ‖LP −1/2‖

Proof

xT Px ≤ c ⇔ 1

c
xT Px ≤ 1 ⇔ 1

c
xT P 1/2 P 1/2x ≤ 1

y =
1

√
c

P 1/2x

max
xT P x≤c

‖Lx‖ = max
yT y≤1

‖L
√

c P −1/2y‖ =
√

c ‖LP −1/2‖
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k2 = max
xT P x≤c

|[0 1]x| =
√

c ‖[0 1]P −1/2‖ = 1.8194
√

c

‖g(x)‖ ≤ β c (1.8194)2‖x‖, ∀ x ∈ Ωc

‖g(x)‖ ≤ γ‖x‖, ∀ x ∈ Ωc, γ = β c (1.8194)2

γ <
c3

c4

⇔ β <
1

3.026 × (1.8194)2c
≈ 0.1

c

β < 0.1/c ⇒ V̇ (x) ≤ −(1 − 10βc)‖x‖2

Hence, the origin is exponentially stable and Ωc is an
estimate of the region of attraction
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Alternative Bound on β

V̇ (x) = −‖x‖2 + 2xT Pg(x)

≤ −‖x‖2 + 1

8
βx3

2
([2 5]x)

≤ −‖x‖2 +
√

29

8
βx2

2
‖x‖2

Over Ωc, x2

2
≤ (1.8194)2c

V̇ (x) ≤ −
(

1 −
√

29

8
β(1.8194)2c

)

‖x‖2

= −
(

1 − βc

0.448

)

‖x‖2

If β < 0.448/c, the origin will be exponentially stable and
Ωc will be an estimate of the region of attraction
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Remark: The inequality β < 0.448/c shows a tradeoff
between the estimate of the region of attraction and the
estimate of the upper bound on β
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Case 2: The origin of the nominal system is asymptotically
stable

V̇ (t, x) =
∂V

∂x
f(x)+

∂V

∂x
g(t, x) ≤ −W3(x)+

∥

∥

∥

∥

∂V

∂x
g(t, x)

∥

∥

∥

∥

Under what condition will the following inequality hold?
∥

∥

∥

∥

∂V

∂x
g(t, x)

∥

∥

∥

∥

< W3(x)

Special Case: Quadratic-Type Lyapunov function

∂V

∂x
f(x) ≤ −c3φ

2(x),

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

≤ c4φ(x)
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V̇ (t, x) ≤ −c3φ
2(x) + c4φ(x)‖g(t, x)‖

If ‖g(t, x)‖ ≤ γφ(x), with γ <
c3

c4

V̇ (t, x) ≤ −(c3 − c4γ)φ2(x)
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Example
ẋ = −x3 + g(t, x)

V (x) = x4 is a quadratic-type Lyapunov function for the
nominal system ẋ = −x3

∂V

∂x
(−x3) = −4x6,

∣

∣

∣

∣

∂V

∂x

∣

∣

∣

∣

= 4|x|3

φ(x) = |x|3, c3 = 4, c4 = 4

Suppose |g(t, x)| ≤ γ|x|3, ∀ x, with γ < 1

V̇ (t, x) ≤ −4(1 − γ)φ2(x)

Hence, the origin is a globally uniformly asymptotically
stable
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Remark: A nominal system with asymptotically, but not
exponentially, stable origin is not robust to smooth
perturbations with arbitrarily small linear growth bounds

Example
ẋ = −x3 + γx

The origin is unstable for any γ > 0
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Nonlinear Systems and Control
Lecture # 14

Passivity
Memoryless Functions

&
State Models
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Memoryless Functions

1

PP���������PPPPPPPP�
+u -y

(a)

y

u

(b)

power inflow = uy

Resistor is passive if uy ≥ 0
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u

y

(a)

u

y

(b)

u

y

(c)

Passive Passive Not passive

y = h(t, u), h ∈ [0,∞]

Vector case:

y = h(t, u), hT =
[

h1, h2, · · · , hp

]

power inflow = Σ
p
i=1
uiyi = uTy
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Definition: y = h(t, u) is

passive if uTy ≥ 0

lossless if uTy = 0

input strictly passive if uTy ≥ uTϕ(u) for some
function ϕ where uTϕ(u) > 0, ∀ u 6= 0

output strictly passive if uTy ≥ yTρ(y) for some
function ρ where yTρ(y) > 0, ∀ y 6= 0
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Sector Nonlinearity: h belongs to the sector [α, β]
(h ∈ [α, β]) if

αu2 ≤ uh(t, u) ≤ βu2

y=αu

y= uβ

u

(a)

y

α > 0

y=αu

y=β

u

y

(b)

u

α < 0

Also, h ∈ (α, β], h ∈ [α, β), h ∈ (α, β)
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αu2 ≤ uh(t, u) ≤ βu2 ⇔ [h(t, u)−αu][h(t, u)−βu] ≤ 0

Definition: A memoryless function h(t, u) is said to belong
to the sector

[0,∞] if uTh(t, u) ≥ 0

[K1,∞] if uT [h(t, u) −K1u] ≥ 0

[0,K2] with K2 = KT
2
> 0 if

hT (t, u)[h(t, u) −K2u] ≤ 0

[K1,K2] with K = K2 −K1 = KT > 0 if

[h(t, u) −K1u]T [h(t, u) −K2u] ≤ 0
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Example

h(u) =

[

h1(u1)

h2(u2)

]

, hi ∈ [αi, βi], βi > αi i = 1, 2

K1 =

[

α1 0

0 α2

]

, K2 =

[

β1 0

0 β2

]

h ∈ [K1,K2]

K = K2 −K1 =

[

β1 − α1 0

0 β2 − α2

]
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Example
‖h(u) − Lu‖ ≤ γ‖u‖

K1 = L− γI, K2 = L+ γI

[h(u) −K1u]T [h(u) −K2u] =

‖h(u) − Lu‖2 − γ2‖u‖2 ≤ 0

K = K2 −K1 = 2γI
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A function in the sector [K1,K2] can be transformed into a
function in the sector [0,∞] by input feedforward followed
by output feedback

-�

��

- K−1 - y = h(t, u) -�

��

-

- K1

66

+

+

+

−

[K1,K2]
Feedforward

−→
[0,K]

K−1

−→
[0, I]

Feedback
−→

[0,∞]
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State Models

1

����u+� +�
-iL vC

-y v1+� ?i1 v3+� ?i3

v2+ �-i2
PP���������PPPPPPPP i1 = h1(v1)

��BBB BBB BBB��� ��� ��v2 = h2(i2)��������L
C PP���������PPPPPPPP i3 = h3(v3)

Lẋ1 = u− h2(x1) − x2

Cẋ2 = x1 − h3(x2)

y = x1 + h1(u)
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V (x) = 1

2
Lx2

1
+ 1

2
Cx2

2

∫ t

0

u(s)y(s) ds ≥ V (x(t)) − V (x(0))

u(t)y(t) ≥ V̇ (x(t), u(t))

V̇ = Lx1ẋ1 + Cx2ẋ2

= x1[u− h2(x1) − x2] + x2[x1 − h3(x2)]

= x1[u− h2(x1)] − x2h3(x2)

= [x1 + h1(u)]u− uh1(u) − x1h2(x1) − x2h3(x2)

= uy − uh1(u) − x1h2(x1) − x2h3(x2)
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uy = V̇ + uh1(u) + x1h2(x1) + x2h3(x2)

If h1, h2, and h3 are passive, uy ≥ V̇ and the system is
passive

Case 1: If h1 = h2 = h3 = 0, then uy = V̇ ; no energy
dissipation; the system is lossless

Case 2: If h1 ∈ (0,∞] (uh1(u) > 0 for u 6= 0), then

uy ≥ V̇ + uh1(u)

The energy absorbed over [0, t] will be greater than the
increase in the stored energy, unless the input u(t) is
identically zero. This is a case of input strict passivity
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Case 3: If h1 = 0 and h2 ∈ (0,∞], then

y = x1 and uy ≥ V̇ + yh2(y)

The energy absorbed over [0, t] will be greater than the
increase in the stored energy, unless the output y is
identically zero. This is a case of output strict passivity

Case 4: If h2 ∈ (0,∞) and h3 ∈ (0,∞), then

uy ≥ V̇ + x1h2(x1) + x2h3(x2)

x1h2(x1) + x2h3(x2) is a positive definite function of x.
This is a case of state strict passivity because the energy
absorbed over [0, t] will be greater than the increase in the
stored energy, unless the state x is identically zero
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Definition: The system

ẋ = f(x, u), y = h(x, u)

is passive if there is a continuously differentiable positive
semidefinite function V (x) (the storage function) such that

uTy ≥ V̇ =
∂V

∂x
f(x, u), ∀ (x, u)

Moreover, it is said to be

lossless if uTy = V̇

input strictly passive if uTy ≥ V̇ + uTϕ(u) for some
function ϕ such that uTϕ(u) > 0, ∀ u 6= 0
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output strictly passive if uTy ≥ V̇ + yTρ(y) for some
function ρ such that yTρ(y) > 0, ∀ y 6= 0

strictly passive if uT y ≥ V̇ + ψ(x) for some positive
definite function ψ

Example
ẋ = u, y = x

V (x) = 1

2
x2 ⇒ uy = V̇ ⇒ Lossless
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Example

ẋ = u, y = x+ h(u), h ∈ [0,∞]

V (x) = 1

2
x2 ⇒ uy = V̇ + uh(u) ⇒ Passive

h ∈ (0,∞] ⇒ uh(u) > 0 ∀ u 6= 0

⇒ Input strictly passive

Example

ẋ = −h(x) + u, y = x, h ∈ [0,∞]

V (x) = 1

2
x2 ⇒ uy = V̇ + yh(y) ⇒ Passive

h ∈ (0,∞] ⇒ Output strictly passive
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Example

ẋ = u, y = h(x), h ∈ [0,∞]

V (x) =

∫ x

0

h(σ) dσ ⇒ V̇ = h(x)ẋ = yu ⇒ Lossless

Example

aẋ = −x+ u, y = h(x), h ∈ [0,∞]

V (x) = a

∫ x

0

h(σ) dσ ⇒ V̇ = h(x)(−x+u) = yu−xh(x)

yu = V̇ + xh(x) ⇒ Passive

h ∈ (0,∞] ⇒ Strictly passive
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Positive Real Transfer Functions
&

Connection with Lyapunov Stability
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Definition: A p× p proper rational transfer function matrix
G(s) is positive real if

poles of all elements of G(s) are in Re[s] ≤ 0

for all real ω for which jω is not a pole of any element of
G(s), the matrix G(jω) +GT (−jω) is positive
semidefinite

any pure imaginary pole jω of any element of G(s) is a
simple pole and the residue matrix
lims→jω(s− jω)G(s) is positive semidefinite Hermitian

G(s) is called strictly positive real if G(s− ε) is positive real
for some ε > 0
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Scalar Case (p = 1):

G(jω) +GT (−jω) = 2Re[G(jω)]

Re[G(jω)] is an even function of ω. The second condition
of the definition reduces to

Re[G(jω)] ≥ 0, ∀ ω ∈ [0,∞)

which holds when the Nyquist plot of of G(jω) lies in the
closed right-half complex plane

This is true only if the relative degree of the transfer function
is zero or one
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Lemma: A p× p proper rational transfer function matrix
G(s) is strictly positive real if and only if

G(s) is Hurwitz

G(jω) +GT (−jω) > 0, ∀ ω ∈ R

G(∞) +GT (∞) > 0 or

lim
ω→∞

ω2(p−q) det[G(jω) +GT (−jω)] > 0

where q = rank[G(∞) +GT (∞)]
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Scalar Case (p = 1): G(s) is strictly positive real if and only
if

G(s) is Hurwitz

Re[G(jω)] > 0, ∀ ω ∈ [0,∞)

G(∞) > 0 or

lim
ω→∞

ω2Re[G(jω)] > 0
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Example:

G(s) =
1

s

has a simple pole at s = 0 whose residue is 1

Re[G(jω)] = Re

[

1

jω

]

= 0, ∀ ω 6= 0

Hence, G is positive real. It is not strictly positive real since

1

(s− ε)

has a pole in Re[s] > 0 for any ε > 0
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Example:

G(s) =
1

s+ a
, a > 0, is Hurwitz

Re[G(jω)] =
a

ω2 + a2
> 0, ∀ ω ∈ [0,∞)

lim
ω→∞

ω2Re[G(jω)] = lim
ω→∞

ω2a

ω2 + a2
= a > 0 ⇒ G is SPR

Example:

G(s) =
1

s2 + s+ 1
, Re[G(jω)] =

1 − ω2

(1 − ω2)2 + ω2

G is not PR

– p. 7/??



Example:

G(s) =







s+2
s+1

1
s+2

−1
s+2

2
s+1






is Hurwitz

G(jω) +GT (−jω) =







2(2+ω2)
1+ω2

−2jω
4+ω2

2jω
4+ω2

4
1+ω2






> 0, ∀ ω ∈ R

G(∞) +GT (∞) =

[

2 0

0 0

]

, q = 1

lim
ω→∞

ω2 det[G(jω) +GT (−jω)] = 4 ⇒ G is SPR
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Positive Real Lemma: Let

G(s) = C(sI −A)−1B +D

where (A,B) is controllable and (A,C) is observable.
G(s) is positive real if and only if there exist matrices
P = P T > 0, L, and W such that

PA+ATP = −LTL

PB = CT − LTW

W TW = D +DT
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Kalman–Yakubovich–Popov Lemma: Let

G(s) = C(sI −A)−1B +D

where (A,B) is controllable and (A,C) is observable.
G(s) is strictly positive real if and only if there exist matrices
P = P T > 0, L, and W , and a positive constant ε such
that

PA+ATP = −LTL− εP

PB = CT − LTW

W TW = D +DT
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Lemma: The linear time-invariant minimal realization

ẋ = Ax+Bu

y = Cx+Du

with
G(s) = C(sI −A)−1B +D

is

passive if G(s) is positive real

strictly passive if G(s) is strictly positive real

Proof: Apply the PR and KYP Lemmas, respectively, and
use V (x) = 1

2
xTPx as the storage function
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uTy −
∂V

∂x
(Ax+Bu)

= uT (Cx+Du) − xTP (Ax+Bu)

= uTCx+ 1
2
uT (D +DT )u

− 1
2x

T (PA+ATP )x− xTPBu

= uT (BTP +W TL)x+ 1
2
uTW TWu

+ 1
2x

TLTLx+ 1
2εx

TPx− xTPBu

= 1
2(Lx+Wu)T (Lx+Wu) + 1

2εx
TPx ≥ 1

2εx
TPx

In the case of the PR Lemma, ε = 0, and we conclude that
the system is passive; in the case of the KYP Lemma,
ε > 0, and we conclude that the system is strictly passive
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Connection with Lyapunov Stability

Lemma: If the system

ẋ = f(x, u), y = h(x, u)

is passive with a positive definite storage function V (x),
then the origin of ẋ = f(x, 0) is stable

Proof:

uTy ≥
∂V

∂x
f(x, u) ⇒

∂V

∂x
f(x, 0) ≤ 0
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Lemma: If the system

ẋ = f(x, u), y = h(x, u)

is strictly passive, then the origin of ẋ = f(x, 0) is
asymptotically stable. Furthermore, if the storage function
is radially unbounded, the origin will be globally
asymptotically stable

Proof: The storage function V (x) is positive definite

uTy ≥
∂V

∂x
f(x, u) + ψ(x) ⇒

∂V

∂x
f(x, 0) ≤ −ψ(x)

Why is V (x) positive definite? Let φ(t;x) be the solution
of ż = f(z, 0), z(0) = x
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V̇ ≤ −ψ(x)

V (φ(τ, x)) − V (x) ≤ −

∫ τ

0
ψ(φ(t;x)) dt, ∀ τ ∈ [0, δ]

V (φ(τ, x)) ≥ 0 ⇒ V (x) ≥

∫ τ

0
ψ(φ(t;x)) dt

V (x̄) = 0 ⇒

∫ τ

0
ψ(φ(t; x̄)) dt = 0, ∀ τ ∈ [0, δ]

⇒ ψ(φ(t; x̄)) ≡ 0 ⇒ φ(t; x̄) ≡ 0 ⇒ x̄ = 0
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Definition: The system

ẋ = f(x, u), y = h(x, u)

is zero-state observable if no solution of ẋ = f(x, 0) can
stay identically in S = {h(x, 0) = 0}, other than the zero
solution x(t) ≡ 0

Linear Systems

ẋ = Ax, y = Cx

Observability of (A,C) is equivalent to

y(t) = CeAtx(0) ≡ 0 ⇔ x(0) = 0 ⇔ x(t) ≡ 0
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Lemma: If the system

ẋ = f(x, u), y = h(x, u)

is output strictly passive and zero-state observable, then
the origin of ẋ = f(x, 0) is asymptotically stable.
Furthermore, if the storage function is radially unbounded,
the origin will be globally asymptotically stable

Proof: The storage function V (x) is positive definite

uTy ≥
∂V

∂x
f(x, u) + yTρ(y) ⇒

∂V

∂x
f(x, 0) ≤ −yTρ(y)

V̇ (x(t)) ≡ 0 ⇒ y(t) ≡ 0 ⇒ x(t) ≡ 0

Apply the invariance principle
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Example

ẋ1 = x2, ẋ2 = −ax3
1 − kx2 + u, y = x2, a, k > 0

V (x) = 1
4ax

4
1 + 1

2x
2
2

V̇ = ax3
1x2 + x2(−ax

3
1 − kx2 + u) = −ky2 + yu

The system is output strictly passive

y(t) ≡ 0 ⇔ x2(t) ≡ 0 ⇒ ax3
1(t) ≡ 0 ⇒ x1(t) ≡ 0

The system is zero-state observable. V is radially
unbounded. Hence, the origin of the unforced system is
globally asymptotically stable
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