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fNonlinear State Model

ry = fl(tamlw'°9mn9u17°'°9up)
Ty = fZ(tamlw'°9mn9u17°'°9up)
Ty = fn(tamla'°°9wnau17°°°9up)

a; denotes the derivative of x; with respect to the time
variable ¢

u1, ug, ..., Up are input variables

x1, T2, ..., T, the state variables

o
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f(tamau) —

i _.f(tawau)
T =

| .fl(tamau)

fZ(tv £, u)

f (tamau) |



|7 z = f(t,z,u)

y = h(t,z,u)

x IS the state, u Is the input
y 1S the output (g-dimensional vector)

Special Cases:
Linear systems:

z = A(t)x+ B(t)u
y = C(t)x+ D(t)u

Unforced state equation:
= f(t,x)
LResuIts froma = f(t,x,u) with u = ~(t, x)
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fAutonomous System:

&= f(x)

Time-Invariant System:
= f(x,u)
y = h(x,u)

A time-invariant state model has a time-invariance property
with respect to shifting the initial time from ¢¢ to tg + a,
provided the input waveform is applied from ty + a rather
than tg

o
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fExistence and Unigueness of Solutions
= f(t,x)

f(t,x) Is piecewise continuous in ¢t and locally Lipschitz in
x over the domain of interest

f(t,x) Is piecewise continuous in t on an interval J C R if
for every bounded subinterval Jo C J, f Is continuous in ¢
for all t € Jy, except, possibly, at a finite number of points
where f may have finite-jump discontinuities

f(t,x) i1s locally Lipschitz in x at a point xg if there is a
neighborhood N (xg,7) = {x € R" | ||x — xo|| < 7}
where f(t, x) satisfies the Lipschitz condition

B If(t, ) — fF(t&, )| < Lllz—yl, L>0
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fA function f(t, «) Is locally Lipschitz in  on a domain
(open and connected set) D C R™ if it is locally Lipschitz at
every point xg € D

When n = 1 and f depends only on x

f(y) — f(x) <7
ly—x| T

On a plot of f(x) versus x, a straight line joining any two
points of f(a) cannot have a slope whose absolute value is
greater than L

Any function f(x) that has infinite slope at some point is
Lnot locally Lipschitz at that point
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- Adiscontinuous function is not locally Lipschitz at the points
of discontinuity

The function f(x) = «'/3 is not locally Lipschitz at = 0
since

fl(x)=(1/3)z7 %2 50 axz—0

On the other hand, if f/(x) is continuous at a point xqg then
f(x) Is locally Lipschitz at the same point because
continuity of f’(x) ensures that | f’(x)| is bounded by a
constant k in a neighborhood of x¢ ; which implies that

f (x) satisfies the Lipschitz condition L = k

More generally, if fort € J C R and x in a domain
D C R", f(t,x) and its partial derivatives 8 f;/0x; are
Lcontinuous, then f(t, x) is locally Lipschitz in = on D
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fLemma: Let f(t,x) be piecewise continuous in ¢ and
locally Lipschitz in x at x¢, for all t € [tg, t1]. Then, there is
0 > 0 such that the state equation & = f(t, ), with
x(tg) = xg, has a unique solution over [tg, tg + 9]

Without the local Lipschitz condition, we cannot ensure
uniqueness of the solution. For example, & = /3 has

z(t) = (2t/3)3/2 and z(t) = 0 as two different solutions
when the initial state is £(0) = 0

The lemma is a local result because it guarantees existence
and uniqueness of the solution over an interval [tg, tg + 4],
but this interval might not include a given interval [tg, t1].
Indeed the solution may cease to exist after some time
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fExampIe:

2

Tr = —x
f(x) = —=x? is locally Lipschitz for all z
0)=-1 = a(t)=——
A T

x(t) > —oco as t — 1

the solution has a finite escape time att = 1

In general, if f(t,x) is locally Lipschitz over a domain D

and the solution of & = f(t, ) has a finite escape time t.,

then the solution x(¢) must leave every compact (closed
Land bounded) subset of D ast — t.
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fGlobal Existence and Unigueness
A function f(t, x) Is globally Lipschitz in x if
| F(#z) — f(&y)ll < Lz — vyl

for all z,y € R™ with the same Lipschitz constant L

If £(t, ) and its partial derivatives 0 f;/8x; are continuous
forall z € R™, then f(t,x) is globally Lipschitz in « if and
only if the partial derivatives 9 f; /0x; are globally bounded,
uniformly in ¢

f(x) = —x? is locally Lipschitz for all = but not globally
LLipschitz because f’(x) = —2« is not globally bounded
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fLemma: Let f(t,x) be piecewise continuous in ¢ and
globally Lipschitz in « for all t € [tg, t1]. Then, the state
equation = f(t,x), with x(tg) = x¢, has a unique
solution over [tg, 1]

The global Lipschitz condition Is satisfied for linear systems
of the form

= A(t)x + g(t)
but it Is a restrictive condition for general nonlinear systems

o

—p. 12/



fLemma: Let f(t,x) be piecewise continuous in ¢ and
locally Lipschitz in x for all t > to and all x in a domalin
D C R™. Let W be a compact subset of D, and suppose

that every solution of
= f(t,x), x(to) = o

with zg € W lies entirely in W. Then, there is a unique
solution that is defined for all t > ¢
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fExampIe:

&= —z® = f()
f(x) Is locally Lipschitz on R, but not globally Lipschitz
because f/(x) = —3x? is not globally bounded

If, at any instant of time, x(t) is positive, the derivative x(t)
will be negative. Similarly, if (t) is negative, the derivative
x(t) will be positive

Therefore, starting from any initial condition (0) = a, the
solution cannot leave the compactset {x € R | |x| < |a|}

Thus, the equation has a unique solution forallt > 0

o
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quuiIibrium Points

A point x = x* In the state space Is said to be an
equilibrium pointof & = f(t, x) if

x(tg) =" = x(t)=x", Vt >t

For the autonomous system & = f(x), the equilibrium
points are the real solutions of the equation

f(x) =0

An equilibrium point could be isolated; that is, there are no
other equilibrium points In its vicinity, or there could be a
continuum of equilibrium points

o
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fA linear system & = Ax can have an isolated equilibrium
point at x = O (if A Is nonsingular) or a continuum of
equilibrium points in the null space of A (if A Is singular)

It cannot have multiple isolated equilibrium points , for if
and x; are two equilibrium points, then by linearity any point
on the line ax, + (1 — a)x, connecting x, and x; will be
an equilibrium point

A nonlinear state equation can have multiple isolated
equilibrium points .For example, the state equation

r1 = T2, I3 = —asinxr] — bxs

has equilibrium points at (x1 = nmw,x2 = 0) for

anO, 1, =2,---
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fLinearization

A common engineering practice in analyzing a nonlinear
system is to linearize it about some nominal operating point
and analyze the resulting linear model

What are the limitations of linearization?

# Since linearization is an approximation in the
neighborhood of an operating point, it can only predict
the “local” behavior of the nonlinear system in the
vicinity of that point. It cannot predict the “nonlocal” or
“global” behavior

# There are “essentially nonlinear phenomena’” that can
L take place only in the presence of nonlinearity
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fNonIinear Phenomena
# Finite escape time

# Multiple isolated equilibrium points

# Limit cycles

# Subharmonic, harmonic, or almost-periodic oscillations
#® Chaos

# Multiple modes of behavior
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fPendqum Equation

\ 0

mlo = —mgsin @ — k16

mg

:1:1:9, $2=é
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Equilibrium Points:

o

r1 = I2
, k
ro = — —SINTX1] — —I2
m
0 = 9
, k
= — —SINnIry — —I9
[ m
(nmw,0) for n = 0,41,

2,...

Nontrivial equilibrium points at (0,0) and (=, 0)
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fPendqum without friction:

T1 = T2

. g .
To — Ismwl

Pendulum with torque input:

1 = o2

]

|

|
<
-
8
o

|
8
(\V)
_|_
~

T2
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[lunnel-Diode Circuit

’l:L L @ I,mA
+ UL —
Yic ViR
R
+ |+
vce——C O\/AVR
E= — —
' 6 0:5 i V
(a) (b) v
dvco dig,
Z p— _— p— _
© dt L dt
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ic+ip—1; =0 = iC:—h(w1)+$2

ve —F+ R +vp =0 = vy =—x1 — Rxas+u

£i31 = é [—h(a:l) —|— :132]

, 1
To = 7 |[—x1 — Rxo + uj
Equilibrium Points:
0 = —h(x1) + x2
0 = — L1 — sz + u

o
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fl\/lass—Spring System

L —

=
-y
k).

my‘l'Ff‘l'Fsp:F

NN

Sources of nonlinearity:
# Nonlinear spring restoring force Fs, = g(y)

L.o Static or Coulomb friction



- P

sp = 9(y)

g(y) = k(1 — a’y?®y, |ay| <1 (softening spring)

g(y) = k(1 + a?y?)y (hardening spring)

F; may have components due to static, Coulomb, and
viscous friction

When the mass is at rest, there Is a static friction force F
that acts parallel to the surface and is limited to +usmg
(0 < pus < 1). Fs takes whatever value, between its limits,
to keep the mass at rest

Once motion has started, the resistive force F is modeled
s a function of the sliding velocity v = v
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(a) (b)

(© (d)

(a) Coulomb friction; (b) Coulomb plus linear viscous friction; (c) static, Coulomb, and linear

iIscous friction; (d) static, Coulomb, and linear viscous friction—Stribeck effect —
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~ Negative-Resistance Oscillator

1
et i = h(v)
L

Resistive

Element

(a) (b)

h(0) =0, hA’(0) <O

\— h(v) - coasv — o0, and h(v) - —ocoas v — —o©

—p. 11/1



tc+1iL+1=0

c 1S (s) ds + h(v) = 0
E_I_E v(s) ds V) =

— OO

Differentiating with respect to ¢ and multiplying by L:

C’Ld% + v + LRh'( )dv 0

— 4 v vV)— =

dt? dt
T=t/vVCL

d d d? d?

dv _ epde A d

dr dt dT? dt?

—p. 12/



fDenote the derivative of v with respect to = by v

b+eh (V)0 +v=0, e=+/L/C
Special case: Van der Pol eqguation
h(v) = —v + %vg
b—e(l—v3)0+v=0
State model: 1 =v, xo2 =7

1 = o2

$.2 = —wl—eh'(wl)wz

o
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fAnother State Model:

Change of variables:

L1

L2

Z1

Z2

z1 =1L, 22 =VC
1
p— —Z2
€
= —6[21 + h(ZQ)]
z =T(x)

\/7[—’% — h(vc)]

T 1(2) =

z2

—ez1 — eh(z2)
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fAdaptive Control
Plant : Yp = apyYp + kpu
ReferenceM odel : YUm = AmYm + kmT
u(t) = 077 (t) + 65y, (t)

m am — QG
0] = — and 65 = L
D kp

When a,, and k, are unknown, we may use

u(t) = 01(t)7(t) + 02(t)yp(1)

where 01 (t) and 02(t) are adjusted on-line

o
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fAdaptive Law (gradient algorithm):

él = —’Y(yp — Ym)T
02 = —v(WYp — Ym)Yp, ¥ >0

State Variables: e, = yp — ym, ¢1 = 01— 07, ¢p2 = 02— 05
Ym = QpYm + kp(HI’r‘ + H;ym)
Up = apYp + kp(017 + O2yp)
€o = apeo+ kp(61 — 07)r + kp(B2yp — 05ym)

= e + kplO3yp — 039y
L — (a’p + kaZ)eo + kp(gl — HI)T‘ -+ kp(HQ — H;)yp
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fCIosed-Loop System:

€o = Qm€o + kp¢1r(t) + kp¢2 [eo + Ym (t)]
b1 —~eor(t)
b2 —~eoleo + Ym(t)]
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fi(x)
f2(x)

Let x(t) = (x1(t), x2(t)) be a solution that starts at initial
state x¢9 = (10, x20). The locus in the x1—x2 plane of the
solution x(t) for all ¢ > 0 is a curve that passes through the
point xqg. This curve is called a trajectory or orbit

The x1—x2 plane is called the state plane or phase plane
The family of all trajectories is called the phase portrait

The vector field f(x) = (f1(x), f2(x)) Is tangent to the
trajectory at point x because

drz  fa(x)

dr1  fi(x)

1 = fi(x1,T2)
t2 = fa(x1,T2)

o

-p. 2/~




fVector Field diagram

Represent f(x) as a vector based at «x; that is, assign to «
the directed line segment from x to « + f(x)

L2

r+ f(x) = (3,2)
f(z

x = (1,1)

L1

Repeat at every point in a grid covering the plane
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ro = —10sin

j31 — L2,



fNumericaI Construction of the Phase Portrait:
#® Select a bounding box in the state plane

# Select an initial point g and calculate the trajectory
through it by solving

= f(x), x(0) = =g

In forward time (with positive t) and in reverse time (with
negative t)

= —f(x), x(0) =mxg

#® Repeat the process interactively
LUse Simulink or pplane
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fQualitative Behavior of Linear Systems

r = Ax,

A1 O
0 Ao

x(t) = M exp(J,t)M 1xzg

or

Als a2 x 2real matrix

o

0 A

or

SR

0 A

x(t) = Mz(t)
z = Jyz(t)

or
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fCase 1. Both eigenvalues are real: A1 £ A2 #£ 0
M = [v1,v2]
v1 & vo are the real eigenvectors associated with A1 & -
Z1 = 121, Z9 = 929

<1 (t) — ZloeAlt, Zz(t) — 2206)\2t

22 = e ™, ¢ = za0/(210) N

The shape of the phase portrait depends on the signs of A\
and -

o
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et and e*2t tend to zero as t — oo

A < A1 <O

ezt tends to zero faster than e*tt

Call A2 the fast eigenvalue (v2 the fast eigenvector) and \q
the slow eigenvalue (vq the slow eigenvector)

The trajectory tends to the origin along the curve
2 = ez} M with Az /A1 > 1

d A _
az2 c—zz[()‘z/)‘l) 1]

L le )\1 1
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Stable Node

A2 > A1 >0

L Reverse arrowheads
Reverse arrowheads — Unstable Node




(a) (b)

Stable Node Unstable Node
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f o
A2 < 0 < A\

et — oo, while e*2t — 0ast — oo

Call A2 the stable eigenvalue (v, the stable eigenvector)
and \q the unstable eigenvalue (v, the unstable
eigenvector)

zZ9o = CZi\z/)\l, )\2/)\1 <0

Saddle
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L

Z1

(b)

Phase Portrait of a Saddle Point




fCase 2. Complex eigenvalues: A1 2 = a % 50

Z21 = az1 — Bz2, Z2 = ([Bz1 + azs

z
r = \/z% + 23, 0 = tan~! (z—z)
1

r(t) = roe® and 6(t) = 6y + Bt

a<0 = r(t) -0ast — oc©
a>0 = r(t) > ocoast — oo

a=0 = r(t)=roVt

—p. 13/7




(@)

~

&
N7k

a <0
Stable Focus

X2

(@)
/

N
&,

(=

)

a >0

Unstable Focus

X9

>
e

()

7

N

a=20

Center

1

X1



fEffect of Perturbations
A— A+ J6A (0A arbitrarily small)

The eigenvalues of a matrix depend continuously on its
parameters

A node (with distinct eigenvalues), a saddle or a focus is
structurally stable because the qualitative behavior remains
the same under arbitrarily small perturbations in A

A stable node with multiple eigenvalues could become a
stable node or a stable focus under arbitrarily small
perturbations in A

o
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fA center Is not structurally stable

w1
—1 pu

Eigenvalues = u £+ 3
pn < 0 = Stable Focus
pu >0 = Unstable Focus

—p. 16/~
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fThe gualitative behavior of a nonlinear system near an
equilibrium point can take one of the patterns we have seen
with linear systems. Correspondingly the equilibrium points
are classified as stable node, unstable node, saddle, stable
focus, unstable focus, or center

Can we determine the type of the equilibrium point of a
nonlinear system by linearization?
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fLet p = (p1, p2) be an equilibrium point of the system

1 = f1(x1,z2), o = fa(x1,x2)

where f; and fs are continuously differentiable
Expand f; and f» in Taylor series about (p1, p2)

1 = fi(p1,p2) +ai1(x1 — p1) + a12(x2 — p2) + H.O.T
2 = fa(p1,p2) + a21(x1 — p1) + az2(x2 — p2) + H.O.T

a1y — Of1(x1, z2) a1y — Of1(x1,x2)
8$1 r=p ’ 3$2 r=p
gt — 0 f2(x1, x2) o — 0 f2(x1, x2)
L 21 = Py ) 22 = s —
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=0
f1(p1,p2) = f2(p1,P2)

Yy — 1 — p1
1 = @1 =
Yo = @ =
Yy~ Ay
" - 9f1 Of
_afll ai2 Ox1 0T
B o
. gz oL
1
a1 a22 i

Y2 — T2 — P2

Tr=p

ST
ai11yi1 + aiz2y2 + Hg -
a21Yy1 + a22y2 + H.O.

of

0 | ,—p
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Eigenvalues of A

Type of equilibrium point
of the nonlinear system

A< A1 <0 Stable Node
Ay > A1 >0 Unstable Node
Ao < 0 < Aq Saddle
at 18, a<0 Stable Focus
at 18, a>0 Unstable Focus

=) 3

Linearization Fails
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fExampIe -

&1 = —xg — pxi(x] + x3)

To = @I1 — ,ua;z(a:% + wg)

x = 0 1s an equilibrium point

af _ [ —pBa?+23) —(1+2umzs)
ox (1 — 2puzix2) —p(xf + 3x3)
5 U
A — of _ |0 -1

- ox =0 1 0

r1 =rcos@and xo = rsinf = 7= —purdand 6 =1
LStabIe focus when p > 0 and Unstable focus when u < 0
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fFor a saddle point, we can use linearization to generate the
stable and unstable trajectories

Let the eigenvalues of the linearization be A\; > 0 > X5 and
the corresponding eigenvectors be v; and v,

The stable and unstable trajectories will be tangent to the
stable and unstable eigenvectors, respectively, as they
approach the equilibrium point p

For the unstable trajectories use g = p £ awv;

For the stable trajectories use xg = p + avs

« IS a small positive number

—-p. 7"




fl\/lultiple Equilibria

Example: Tunnel-diode circuit

a':l = O.5[—h(a31) -+ $2]
w.z = O.2(—$1 — 1.5%2 —+ 1.2)

h(x1) = 17.76x1—103.79x%+229.62x3 —226.31x7+83.72x>

'R
1.

0.8 T ‘ Q1 = (0'063’ 0'758)
0.6[[Q X2 S ' Q2 = (0.285,0.61)

0.4} S

02 Q0 Q3 = (0.884,0.21)

00 0.5 1
: VR

—p. 8/~




8f | —0.5h(z1) 0.5
or —0.2  —0.3
- —3.598 0.5
— , HKigenvalues: — 3.57, —0.33
—0.2 —-0.3
 1.82 0.5
— ,  Kigenvalues : 1.77, —0.25
—0.2 —-0.3
| —1.427 0.5
— , HKigenvalues: — 1.33, —0.4
—0.2 —-0.3

IS a stable node; Q5 Is a saddle; Q3 Is a stable node
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x'=0.5(-17.76 x + 103.79 ¥ - 229.62 x° + 226.31 x* - 83.72x° + y)
y'=02(-x-15y+12)

15

-0.5&

-0.5

X

Cursor pasition: (1.02, -0.905)

15

The second unstable trajectory --* a possible eq. pt. near (0.063, 0.7G6).
Ready .

The forward orbit from (1.7, 2.2 --* 3 possible eq. pt. near (088, 0.217.
The backward orbit from (1.7, 2.27 left the computation window.

Ready.
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nysteresis characteristics of the tunnel-diode circuit

u==F,

Y = VR

0.8
0.6¢
0.4;
0.2

0.5

—p. 11/~
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fOsciIlation: A system oscillates when it has a nontrivial
periodic solution

x(t+T)=x(t), Vt>0

Linear (Harmonic) Oscillator:

z1(t) = ro cos(Bt + Op), z9(t) = ro sin(Bt 4+ Oyp)

&0

\/22(0) + 23(0), 6o = tan™" [

=
o
]
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The linear oscillation is not practical because

# Itis not structurally stable. Infinitesimally small
perturbations may change the type of the equilibrium
point to a stable focus (decaying oscillation) or unstable
focus (growing oscillation)

# The amplitude of oscillation depends on the initial
conditions

The same problems exist with oscillation of nonlinear
systems due to a center equilibrium point (e.g., pendulum
without friction)

o -
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fLimit Cycles:

Example: Negative Resistance Oscillator

(/
T F i = h(v)
L

Resistive

Element

(a) (b)
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:i:l = X2
$.2 = —aI1 —sh'(azl)azz
There Is a unique equilibrium point at the origin
a , _
0,
A p— 8—f p—
Pla=0 | 1 —ew'(0)

AN +eh (0OOA+1=0
h'(0) < 0 = Unstable Focus or Unstable Node

o -
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ﬁEnergy Analysis:

1~ .2 17 :2
FE = §CUC —I— EL?’L
ve =x1 and i = —h(x1) — —x2
g

E

3C{z] + [eh(z1) + 22]°}

C{a:lcizl + [eh(wl) —+ w2][€h,(a§1)ib1 + 2132]}

C{a:lccz —+ [eh(wl) -+ :cz][sh'(azl):cg — L1 — €h,(a}1)w2]}
Clxixes — exih(x1) — x122]

—eCx1h(x1)

—p. 6/~



E=—
€Cw1h($1)
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fExampIe: Van der Pol Oscillator

T1

T2

= —x1 +e(1 — 2z

re
5 &




107

. 1
21 = —Z9
€

Z.z = —6(21—22—|—%Z§)

. . 3 -
y I
J< O
Z
1
e -
—2 \J\$\
. . . -3 .
-5 0 5 10 -2 0 2

- p. 9/~
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o

(a) (b)

<
Cl

Stable Limit Cycle Unstable Limit Cycle



fExampIe: Wien-Bridge Oscillator

Ry C1
AA——]
+ V1 —
_|_
& §R2 g(va2)(

Equivalent Circuit



fState variables £ = v; and x5 = vo

i : [ + (z2)]
— —X €Tro — X
L1 Ci Ry 1 2 g\xr2
i ! [ + (z2)] !
= — —x ro — g(x — €T
t2 CoR,\ T2 92N T o R 2

There Is a unique equilibrium pointatz = 0
Numericaldata: C; = Cs = R = Ry, =1

g(v) = 3.234v — 2.195v° + 0.666v°

o -
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X'=-x+y-(3.234y-2.195y° + 0.666 y°)
y'=—(-x+y-(3.234y-2.195y* + 0.666 y°)) - y

0.8

0.4

Cursor position:  (-0.663, -1.7I) —_—
Computing the field element=.

Ready .

The fomward orbit from (013, -0.17 -7 3 neady closed orbit. —p. 13/7
The backward orbit from (0.13, -0.171--* 3 pos=ible eq. pt. near (0, 0.

| on P




X'=-x+y-(3.234y-2.195y° + 0.666 y°)
y'=—(-x+y-(3.234y-2.195y* + 0.666 y°)) - y

6~ !
N
,

-6

Cursor position:  (-5.72, -8.7) [

Ready .

Computing the field element=.

Ready. —p. 14/
Select a graphics object with the mouse.

| on P
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Nonlinear Systems and Control
Lecture# 6
Bifurcation



fBifurcation IS a change In the equilibrium points or periodic
orbits, or in their stability properties, as a parameter Is
varied

Example

. 2
1 = pn— I

:f?z = —I2

Find the equilibrium points and their types for different
values of u

For . > 0 there are two equilibrium points at (,/x, 0) and
(_\/ﬁv O)

-p. 2/~



fLinearization at ({/m, 0):
_—2\/ﬁ .
0

—1

(v/1,0) Is a stable node

Linearization at (—+/f, 0):
] 2B O ]
0 —1

(—+/1, 0) Is a saddle

o -

- p. 3/~



-

:i:lzu—

2 o
:1:1, ro = —I9

No equilibrium points when 1 < 0

As p decreases, the saddle and node approach each other,
collide at u© = 0, and disappear for u < 0
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X
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L pn >0
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fu IS called the bifurcation parameter and i = 0 is the
bifurcation point

Bifurcation Diagram

(a) Saddle—node bifurcation

—p. 5/~



~ Example -

. 2 .
L1 = ULl — Ly, L2 = —I2

Two equilibrium points at (0,0) and (g, 0)

The Jacobian at (0,0) is

(0, 0) Is a stable node for u < 0 and a saddle for 4t > 0

—un 0
0 -1

The Jacobian at (u, 0) is

(1, 0) Is a saddle for p < 0 and a stable node for o > 0
LAn eigenvalue crosses the origin as p Crosses zero

—p. 6/~



fWhiIe the equilibrium points persist through the bifurcation
point u = 0, (0, 0) changes from a stable node to a saddle
and (u,0) changes from a saddle to a stable node

(a) Saddle—node bifurcation (b) Transcritical bifurcation

dangerous or hard safe or soft

—-p. 7/



fExampIe o

. 3 .
L1 = ULyl — Ly, Lo = —I2

For 1 < 0, there Is a stable node at the origin

For u > 0, there are three equilibrium points: a saddle at
(0,0) and stable nodes at (,/zt,0), and (—,/t, 0)

(c) Supercritical pitchfork bifurcation

- p. 8/~



fExampIe o

. 3 .
T1 = pxr1 + ], T2 = —T2

For u < 0, there are three equilibrium points: a stable node
at (0,0) and two saddles at (+=+/—pu, 0)

For u > 0, there is a saddle at (0, 0)

L (d) Subcritical pitchfork bifurcation

- p. 9/~



fNotice the difference between supercritical and subcritical
pitchfork bifurcations

(c) Supercritical pitchfork bifurcation (d) Subcritical pitchfork bifurcation

safe or soft dangerous or hard

—p. 10/7



fExampIe: Tunnel diode Circuit

1
:i:l — E [—h(a:l) —|— wz]
1
To = 7 |—x1 — Rx2 + p

—p. 11/7



fExampIe

1 = xi(p— ] —x3) — @2

L2 = ®2(p — ] —x3) + o1

There Is a unique equilibrium point at the origin

Linearization:

Stable focus for 4 < 0, and unstable focus for 1 > 0

A pair of complex eigenvalues cross the imaginary axis as
j4 CrOSSES zero

. -

—p. 1217



|7 = ur —ro and 0 =1

For i > 0, there Is a stable limit cycle at r = /i

p <0 u>0

é/
%\

k

\\@

L Supercritical Hopf bifurcation

—p. 13/7



fExampIe o

1 = 1 |[p+ (27 + x3) — (z] + 23)°] — x2
T2 = 3 |p+ (2] + x3) — (2] + mg)z + T1

Linearization:

Stable focus for 1 < 0, and unstable focus for . > 0

A pair of complex eigenvalues cross the imaginary axis as
jL CrOSSes zero

—p. 1417



|7 q‘a:“r—|—r3—r5 and 0 =1

Sketch of pur + r3 — r°:

N

\ |

pn <0 pn >0

For small ||, the stable limit cycles are approximated by
r = 1, while the unstable limit cycle for u < 0 is

Lapproximated by r = /|

—p. 15/7



fAs p Increases from negative to positive values, the stable
focus at the origin merges with the unstable limit cycle and
bifurcates into unstable focus

Subcritical Hopf bifurcation

V) e
\ _ -
2 2
(e) Supercritical Hopf bifurcation (f) Subcrtitical Hopf bifurcation
safe or soft dangerous or hard

o -

—p. 16/7



fAII six types of bifurcation occur in the vicinity of an
equilibrium point. They are called local bifurcations

Example of Global Bifurcation

Ci?l = I
s = pxTe+x1 — T2 + T1T2
There are two equilibrium points at (0,0) and (1, 0). By

linearization, we can see that (0, 0) is always a saddle,
while (1, 0) is an unstable focus for —1 < p < 1

Limit analysisto therange -1 < u <1

o

—p. 1717



f X5 X5 -
p=—0.95 p=—0.88
7T =
N7 &
X5 %5
p=—0.8645 p=—0.8
N 70
NUEVY \&//’&

L Saddle—connection (or homoclinic) bifurcation

—p. 18/7



Nonlinear Systems and Control
Lecture# /

Stability of Equilibrium Points

Basic Concepts & Linearization



o i = f(a)

f 1s locally Lipschitz over a domain D C R"™
Suppose x € D is an equilibrium point; that is, f(x) =0
Characterize and study the stability of x

For convenience, we state all definitions and theorems for
the case when the equilibrium point is at the origin of R™;
that iIs, z = 0. No loss of generality

Yy=x— =T

=i = f@ = fu+2) L), whereg(0) =0

-p. 2/~



fDefinition: The equilibrium pointz = 0of & = f(x) IS

# stable if for each e > 0 thereis 6 > 0 (dependent on ¢)
such that

|z(0)]| <d = |[z(t)]| <e, VI>0
® unstable if it iIs not stable

# asymptotically stable if it is stable and é can be chosen
such that

|lz(0)|| < 6 = tlim x(t) =0

- p. 3/~



f First-Order Systems (n = 1)

The behavior of x(t) in the neighborhood of the origin can
be determined by examining the sign of f(x)

The -4 requirement for stability is violated if = f(x) > 0 on
either side of the origin

0 / \m / o
a8 VAR

L Unstable Unstable Unstable

—p. 4/~



fThe origin is stable if and only iIf zf(x) < 0 in some
neighborhood of the origin

f(x) f(x) f(x)

Stable Stable Stable

—p. 5/~



fThe origin is asymptotically stable if and only if z f(x) < 0
In some neighborhood of the origin

\

/ /
F(X) ()

(@) (b)

LAsymptoticaIIy Stable Globally Asymptotically Stable

—p. 6/~



fDefinition: Let the origin be an asymptotically stable
equilibrium point of the system & = f(x), where fis a
locally Lipschitz function defined over a domain D C R"
(0 € D)

# The region of attraction (also called region of
asymptotic stability, domain of attraction, or basin) is the
set of all points xg in D such that the solution of

= f(x), x(0)=xg

Is defined for all ¢t > 0 and converges to the origin as ¢
tends to infinity

# The origin is said to be globally asymptotically stable if
L the region of attraction is the whole space R"

—-p. 7/



Second-Order Systems (n = 2)

Type of equilibrium point

Stability Property

Center

Stable Node

Stable Focus

Unstable Node

Unstable Focus

Saddle

- p. 8/~



~ Example: Tunnel Diode Circuit

x'=05 (- 17.76 x + 103.79 X* - 229.62 X° + 226.31 x* - 83.72 X° +)
y'=02(-x-15y+1.2)

15

05k

Y R Lo~ LN b Lo - Cluit

-0.5 0 0.5 1 15

Cursor position: (1.02, -0.90%)
| The second unstable trajectory --+ 3 possible eq. pt. near (0063, 0767,
Faadsr

| - p. 9/~



~ Example: Pendulum Without Friction




~ Example: Pendulum With Friction

X'=y
y'=-10sin(x) -y

Cursor position: (-0.762, -13.7)

| The backward orbit from (-3, 00237 left the computation window,

Fagdsr




fLinear Time-Invariant Systems

P~ 'AP = J = block diag[J1, J2, . . ., Jy]

A
0

x(t) = exp(At)x(0)

1
A

r = Ax

0
1

0

0
0

e )

>

mXxm

—p. 1217



r m; -
|7 exp(At) = Pexp(Jt)P~ ! = S: S: t* =L exp(\;t) Rix
1=1 k=1

m; IS the order of the Jordan block .J;

Re[A;] < 0 Vi < Asymptotically Stable

Re[\;] > 0 forsome: = Unstable
Re[\;] <0 Vi & m; > 1for Re[\;] =0 = Unstable
Re[A\;] <0 Vi & m; = 1for Re[\;] =0 = Stable

If an n X n matrix A has a repeated eigenvalue \; of
algebraic multiplicity g;, then the Jordan blocks of A; have
order one if and only if rank(A — \;I) = n — q;

—p. 13/7



fTheorem: The equilibrium point z = 0 of £ = Ax Is stable if
and only if all eigenvalues of A satisfy Re[A;] < 0 and for
every eigenvalue with Re[\;] = 0 and algebraic multiplicity
q; > 2, rank(A — \;I) = n — q;, where n Is the dimension
of . The equilibrium point z = 0 is globally asymptotically
stable if and only if all eigenvalues of A satisfy Re[\;] < 0

When all eigenvalues of A satisfy Re[\;] < 0, A Is called a
Hurwitz matrix

When the origin of a linear system is asymptotically stable,
Its solution satisfies the inequality

lz(®)]| < kllz(0)[le™, vt>0

CE>1,A>0

—p. 1417



fExponentiaI Stability

Definition: The equilibrium point x = 0 of & = f(x) Is said
to be exponentially stable if

lz(@®)|| < kllz(0)]le™, V>0
E>1, A> 0, forall |x(0)|| < ¢

It is said to be globally exponentially stable if the inequality
IS satisfied for any initial state x(0)

Exponential Stability =- Asymptotic Stability

o -

—p. 15/7



fExampIe o

T = —x5

The origin is asymptotically stable

x(0)

©(t) = V1 + 2tx2(0)

x(t) does not satisfy |x(t)| < ke~ *|x(0)| because

2\t
€ 2

t)| < ke M|xz(0 <
|z (t)| < ke” ™ |x(0)] = 1 2622(0) =

62)\t

Impossible because lim = 00
\_ t—oo 1 4 2tx2(0)

—p. 16/7



fLinearization
ZBZf(CU), f(O):O

f is continuously differentiable over D = {||x|| < r}
of
J(@) = " (x)
£r

h(oc) = f(ox) for 0 <o <1
h'(o) = J(ox)x

1

h(1) — h(0) = / W (o) do, h(0) = f(0) =0

0

1
\— f(a:):/o J(ox) do x



|7 S
1
f(a:):/o J(ox) do x

Set A = J(0) and add and subtract Ax
1
f(z) = [A+ G(z)]z, where G(z) = /O T (ox) — J(0)] do

G(xr) -0 as ¢ — 0

This suggests that in a small neighborhood of the origin we
can approximate the nonlinear system & = f(x) by its
linearization about the origin ¢ = Ax

o

—p. 18/7



fTheorem:

# The origin is exponentially stable if and only if
Re[\;] < 0 for all eigenvalues of A

# The origin is unstable if Re[\;] > 0 for some ¢

Linearization fails when Re[\;] < 0 for all z, with
Re[\;] = 0 for some ¢

Example

+ = ax>

_ 97

A =
Ox =0

= Sawz}w:O =0

Stable if a = 0; Asymp stable if a < 0; Unstable ifa > 0
LWhen a < 0, the origin is not exponentially stable

—p. 19/7
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Lyapunov Stability



fLet V (x) be a continuously differentiable function defined in
a domain D C R™;, 0 € D. The derivative of V along the
trajectories of & = f(x) IS

: "oV "oV
Viz) = T; = fi(x)
;ami ;83&5
- fi(z)
_ {av 1% av} fa(z)
dx1° Oz’ "' ° O 5
RGN
oV
= af(w)

—p. 2/



ﬁf ¢(t; x) Is the solution of & = f(x) that starts at initial
state  at time ¢ = 0, then

V() = GVt

If V(x) is negative, V' will decrease along the solution of

z = f(x)

If V() is positive, V will increase along the solution of

x = f(z)

o

—p. 3/



fLyapunov’s Theorem:
# If thereis V (x) such that

V(0)=0 and V() >0, Ve D/{0}

Vi) <0, Yx €D
then the origin Is a stable

® Moreover, If
V(iz) <0, Vxe D/{0}

then the origin is asymptotically stable

o

—p. 4/



f.o Furthermore, if V() > 0,V x # 0,

and V(x) < 0,V  # 0, then the origin is globally
asymptotically stable

Proof: 0<r<e B, ={|z| <r}

a = min V(x) > 0

||| ="

0<B<K
Qg ={xz € B, |V(x) <3}
||| <6 = V() <P

—p. 5/



Solutions starting in Qg stay in Qg because V(z) < 0in Qg
x(0) € Bs = x(0) € Qg = z(t) € Qg = z(t) € B,
[z(0)]| <0 = |lz@®)]| <r<e Vt>0
= The origin Is stable

Now suppose V(z) < 0V = € D/{0}. V (x(t) is
monotonically decreasing and V (x(t)) > 0

tlim V(x(t)) =c>0
tlim V(x(t)) =c>0 Showthatec =0

Suppose ¢ > 0. By continuity of V (x), there is d > 0 such
~ that By C Q. Then, z(t) lies outside By for all t > 0

—p. 6/



f v=— max V()

d<|lz|[<r

V(z(t)) = V(x(0)) +/O V(z(r)) dr < V(2(0)) — ~t

This inequality contradicts the assumption ¢ > 0
= The origin is asymptotically stable

The condition ||z|| — o0 = V(x) — oo iImplies that the
set . ={x € R" | V(x) < ¢} Iis compact for every ¢ > 0.
This Is so because for any ¢ > 0, there is » > 0 such that
V(x) > cwhenever ||x|| > r. Thus, Q. C B,. All solutions
starting 2. will converge to the origin. For any point

p € R™, choosing ¢ = V (p) ensures that p € (2.

o = The origin is globally asymptotically stable

—p. 7/



fTerminoIogy
V(0) =0, V(x) > 0forx # 0| Positive semidefinite
V(0) =0, V() >0forxz #0 Positive definite
V(0) =0, V(x) < 0forx # 0 | Negative semidefinite
V(0)=0, V() <O0forx #0 Negative definite
||| > 00 = V() = o0 Radially unbounded

Lyapunov’ Theorem: The origin is stable if there is a
continuously differentiable positive definite function V' (x) so
that V () is negative semidefinite, and it is asymptotically

stable if V() is negative definite. It is globally
asymptotically stable if the conditions for asymptotic
Lstability hold globally and V' (x) Is radially unbounded

—p. 8/



fA continuously differentiable function V (x) satisfying the
conditions for stability is called a Lyapunov function. The
surface V (x) = ¢, for some ¢ > 0, is called a Lyapunov
surface or a level surface

—p. 9



fWhy do we need the radial unboundedness condition to

show global asymptotic stability?
It ensures that Q. = {x € R" | V(x) < ¢} IS bounded for

everyc > 0
Without it 2. might not bounded for large ¢
Example
] 2
Vi(x) = 1+ a2 + x5

—p. 10/
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fQuadratic Forms

n n
V(z) =2l Px = y: y:pija:ia:j, P =P
1=17=1

Amin(P)HCEHZ < z! Pz < AmaX(P)”w”2
P > 0 (Positive semidefinite) if and only if X\;(P) > 0 Vi
P > 0 (Positive definite) if and only if X\;(P) > 0 V4

V (x) Is positive definite if and only if P is positive definite
V (x) is positive semidefinite if and only if P is positive
semidefinite

P > 0 if and only if all the leading principal minors of P are

Lpositive

—p. 2/



fLinear Systems

T = Ax
V(z) = ! Px, Pp=prPl>0

V(z) =l Pi + &7 Px = 2T (PA + ATP)x def —zl'Qx

If Q > 0, then A is Hurwitz

Or choose Q > 0 and solve the Lyapunov equation
PA+ ATP=—-Q

If P > 0, then A Is Hurwitz

LI\/Iatlab: P = lyap(A’, Q)

—p. 3/



fTheorem A matrix A is Hurwitz if and only if for any

Q = Q' > 0thereis P = PT > 0 that satisfies the
Lyapunov equation

PA+ ATP=—-Q

Moreover, If A Is Hurwitz, then P is the unigue solution

ldea of the proof: Sufficiency follows from Lyapunov’s
theorem. Necessity is shown by verifying that

P = /oo exp(A1t)Q exp(At) dt
0

IS positive definite and satisfies the Lyapunov equation

—p. 4/



fLinearization
¢ = f(z) =[A+ G(z)]x

G(x) — 0 as ¢ — 0

Suppose A is Hurwitz. Choose Q = Q' > 0 and solve the
Lyapunov equation PA + AT P = —Q for P. Use
V(z) = ! Pz as a Lyapunov function candidate for

z = f(x)
V(x) ' Pf(x) + 1 (x)Px

I P[A + G(x)]z + T [AT + GT (x)] Px

' (PA + ATP)x + 22T PG(x)x

—2'Qx + 22T PG(x)x

o




o | .
V() < —2”Qa +2||P|| |G(@)]| ||=]

For any v > 0, there exists » > 0 such that

|G (@)|| <, Vx| <r

z'Qz > Amin(Q)||z|]? & —2'Qz < —Amin(Q)||z||?

V(z) < —[Amin(Q) — 27/ P|]|lz]I?, V¥ |z <7
Choose
Amin(Q)

v <
2|| P

V (xz) = ! Px is a Lyapunov function for & = f(x)

o

—p. 6/



fWe can use V (z) = z! Pz to estimate the region of
attraction

Suppose V(z) <0, VO < || <r

Take ¢ = min z! Pz = Amin (P) 72

|z||=r

{z' Pz < c} C {llz|| <r}

All trajectories starting in the set {«! Px < ¢} approach the

origin as t tends to co. Hence, the set {z! Pz < c} is a
subset of the region of attraction (an estimate of the region
of attraction)

o
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fExampIe -

a':l = —I2
w.z p— I —|— (a:% — 1)$2
5, 0 —1
A p— —f p—
ox | ,.—g 1 —1

has eigenvalues (—1 £ j+/3) /2. Hence the origin is
asymptotically stable

1.5 —0.5 |
0.5 1

TakeQ =1, PA+ATP=—T = P=

" Awin(P) = 0.691

—p. 8/



|7 V(z) = ' Px = 1.52% — z123 + 3 o

V(:c) (3x1 — x2)(—x2) + (—x1 + 2x2)[x1 + (:c% — 1)ax2]

_(w% + CE%) — ($:]3_$2 — Qw%CE%)

VB

. 5
V(z) < —||z||*+|z1| |z122| |21 —222| < —||e’13||2+7||«’1?||4

where |z1| < |lz|, |z1z2] < 5llz]%, |21 — 222 < V5|z]]

. 2 def
Viz) <0 foro < ||z||? < — = r?
(@) J=I? < =
0 2
Take ¢ = Amin(P)’r‘ — 0.691 X ﬁ — 0.018

L{V(w) < ¢} is an estimate of the region of attraction

—p. 9/



fExampIe:
&= —g(x)
g(0) =0; xg(x) >0, YV #0 and « € (—a,a)

Vi) = | " 9(y) dy

: A%
V(w) — a[_g(w)] — _92(w) <0,Vx € (—a, a’)v x # 0
The origin is asymptotically stable

If xg(x) > O for all  # 0, use

B V(z) = la? + /0 g(y) dy




-

V(z) = 32° + /Owg(y) dy

IS positive definite for all x and radially unbounded since
V(x) > %wz

V(z) = —zg(z) — g?(x) <0, Vaz#O0

The origin is globally asymptotically stable

o




fExampIe: Pendulum equation without friction

T1 T2

— a sin xy

T2

V(x) =a(l —cosxy) + %wg

V(0) = 0 and V (x) Is positive definite over the domain
—2m < x1 < 27

V(:c) — a1 SinxT1 + xoxo = axresinxr] — axssinax; = 0
The origin Is stable

Since V (z) = 0, the origin is not asymptotically stable

o
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fExampIe:

Pendulum equation with friction

T1 T2

— asinx; — bxs

T2
1 5
V(x) =a(l —cosxy) + 5 T2

Vx) = axisinxy + xoxo = — bx?
2

The origin Is stable

V (x) is not negative definite because V (z) = 0 for x»

Irrespective of the value of x4

o

—p. 13/1



fThe conditions of Lyapunov’s theorem are only sufficient.
Failure of a Lyapunov function candidate to satisfy the
conditions for stability or asymptotic stability does not mean
that the equilibrium point is not stable or asymptotically
stable. It only means that such stability property cannot be
established by using this Lyapunov function candidate

Try
Vi) = %wTPw + a(1 — cos x1)
— %[ml 2] P11 P12 1 + a(1 — cos x1)
P12 P22 | | T2

L p11 > 0, p11p22 — pfz >0

—p. 14/



f V(.’L‘) — (pllwl + P12T2 + a sin .’L‘l) o
+ (p12x1 + p22x2) (—asinx; — bxa)
a(l — pa2)x2sinxy — apioxy sinxq

+ (p11 — p12b) T1x2 + (P12 — P22b) T3
p22 =1, p11 =bpiz2 = 0<p12<b, Take pi2 =b/2
Viz) = — %abajl sinxq — %bwg
D= {x € R’ ||z < m}

V (x) is positive definite and V (x) is negative definite over D
The origin is asymptotically stable

LRead about the variable gradient method in the textbook

—p. 15/
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fExampIe: Pendulum equation with friction

T1 T2

— asinx; — bxs

T2
1 5
V(x) =a(l —cosxy) + 5 T2

V(:c) = a&1sin Ty + ToxLs = — bwg
The origin is stable. V' (x) is not negative definite because
V(z) = 0 for x5 = 0 irrespective of the value of x;

However, near the origin, the solution cannot stay
Lidentically in the set {x2 = 0}

—p. 21



fDefinitions: Let () be a solution of & = f(x)

A point p is said to be a positive limit point of x(¢) if there is
a sequence {t,}, with lim,,_, - t,, = oo, such that
x(t,) — pasn — oo

The set of all positive limit points of x(¢) Is called the
positive limit set of x(t); denoted by LT

If x(t) approaches an asymptotically stable equilibrium
point Z, then Z is the positive limit point of z(t) and L™ = x

A stable limit cycle is the positive limit set of every solution
starting sufficiently near the limit cycle

o
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fA set M Is an invariant set with respectto « = f(x) If
r(0) e M = x(t) e M, VtE R

Examples:
# Equilibrium points

# Limit Cycles

A set M Is a positively invariant set with respect to

= f(x) If
z(0) € M = z(t) € M, Yt>0

Example: The set Q. = {V (z) < ¢} with V(z) < 0in Q.

o
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fThe distance from a point p to a set M is defined by

dist(p, M) = inf |lp — x|

x(t) approaches a set M as t approaches infinity, if for
each e > 0 thereis T > 0 such that
dist(z(t), M) <e, Vt>T

Example: every solution x(t) starting sufficiently near a
stable limit cycle approaches the limit cycle as t — oo

Notice, however, that x(t) does converge to any specific
point on the limit cycle

o
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fLemma: If a solution x(t) of € = f(x) Is bounded and

belongs to D for t > 0, then its positive limit set LT is a
nonempty, compact, invariant set. Moreover, x(t)

approaches L™ as t — oo

LaSalle’s theorem: Let f(x) be a locally Lipschitz function
defined over a domain D C R™ and 2 C D be a compact
set that is positively invariant with respectto & = f(x). Let
V (x) be a continuously differentiable function defined over

D such that V(z) < 0in Q. Let E be the set of all points in

Q where V (z) = 0, and M be the largest invariant set in E.
Then every solution starting in 2 approaches M ast — oo

o
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fProof: -

V() < in Q = V(x(t)) is a decreasing

V(x)iscontinuousin 2 = V(x) > b= misrll V(x)
T

= tlim V(z(t)) =a
x(t) € Q@ = x(t)isbounded = LT exists

Moreover, L™ C Q and z(t) approaches LT ast — oo

Forany p € L™, there is {t,,} with lim,, ... ¢, = oo such
that x(t,,) —» pasn — oo

L V(x) is continuous = V(p) = nli—{go V(z(tn)) = a
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V() =aon Lt and LT invariant = V(z) =0,Va € LT

LTCMCECSQ

x(t) approaches L™ = x(t) approaches M (as t — oo)
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fTheorem: Let f(x) be a locally Lipschitz function defined
overadomain D C R™, 0 € D. Let V(x) be a continuously
differentiable positive definite function defined over D such

that V(z) < 0in D. LetS = {x € D | V(x) = 0}
# |f no solution can stay identically in S, other than the

trivial solution x(t) = 0, then the origin is asymptotically
stable

# Moreover, if I' C D Is compact and positively invariant,
then it is a subset of the region of attraction

# Furthermore, if D = R™ and V (x) is radially
unbounded, then the origin is globally asymptotically
stable

o
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fExampIe:

T1 T2

—hl(ml) — hz(wz)
h;(0) =0, yh;(y) >0, for0 < |y| <a

T2

V@) = [ m)dy + }a3

D={-a<zi<a, —a<xx<a}
V(x) = hi(x1)x2+x2[—hi1(x1)—ha(x2)] = —z2h2(z2) < 0
V() =0 = zaha(x2) =0 = 22 =0
S={x € D|xz =0}

o
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o . -

T1 = x2, x2 = —hi(x1)— ha2(x2)

x2(t) =0 = 22(t) =0 = hi(x1(t)) = 0= x1(t) =0
The only solution that can stay identically in S is x(t) = 0
Thus, the origin is asymptotically stable
Suppose a = oo and [ h1(z) dz — oo as |y| — oo
Then, D = R?and V(z) = [, hi(y) dy + 33 is radially
unbounded. § = {z € R? | 2 = 0} and the only solution

that can stay identically in S'is &(t) = 0

LThe origin is globally asymptotically stable
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fExampIe: m-link Robot Manipulator

Load

L Two-link Robot Manipulator

—p. 12/



- M(q)d + C(q,9)¢d + Dq+g(q) =u

q IS an m-dimensional vector of joint positions
u IS an m-dimensional control (torque) inputs
M = M?'T > 0is the inertia matrix
C'(q, q)q accounts for centrifugal and Coriolis forces

(M —2C) = —(M - 20)

D¢ accounts for viscous damping; D = DT >0
g(q) accounts for gravity forces; g(q) = [0P(q)/8q]*

LP(q) IS the total potential energy of the links due to gravity
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ﬁnvestigate the use of the (PD plus gravity compensation)
control law

u=g(q) — Kp(q—q°) — Kaq

to stabilize the robot at a desired position g*, where K, and
K, are symmetric positive definite matrices

e=q—q, é=4¢g

Me

Mgq

—Cqg—Dg—g(q)+u
—Cq—Dqg—Ky(q—q") —Kaqq
—Cé—-Dé—Kpe—Kgé
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- Mé=-Cé—Dé—Kpe—Kgé
V =2¢"M(q)é + 1" Kpe
V = éTMé+ ;¢TMé + eTKjpé

= —el'Cé—¢e¢l'Dé — e Kpe — el K4é
+ seTMeé + eT Kpé

= 2¢T(M —2C)é — éT(K4 + D)é

= —el'(K;+D)ée <0
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f(Kd + D) Is positive definite
V=-¢(Ksy+D)eé=0= é=0
Mé=-Cé—-—Dé—-—Kye—Kgé

e(t) =0 = €é(t) =0 = Kpe(t) =0 = e(t) =0

By LaSalle’s theorem the origin (e = 0,¢é = 0) is globally
asymptotically stable
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Conver se Lyapunov Functions
&

Time Varying Systems



fConverse Lyapunov Theorem—Exponential Stability

Let x = 0 be an exponentially stable equilibrium point for
the system & = f(x), where f is continuously differentiable
on D = {||z|| < r}. Let k, A, and r¢ be positive constants

with 79 < r/k such that
lz@®)[l < kllz(0)][e™, Vx(0) € Do, V>0

where Dg = {||z|| < ro}. Then, there is a continuously
differentiable function V' (x) that satisfies the inequalities

o
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cillz||? < V(z) < caflz||?
oV
——f(@) < —csl|z|?

)<

for all x € Dg, with positive constants ¢y, c2, c3, and ¢4
Moreover, If f is continuously differentiable for all x, globally
Lipschitz, and the origin is globally exponentially stable,
then V' (x) Is defined and satisfies the aforementioned
iInequalities for all x € R™

o
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ﬁdea of the proof: Let ¢ (t; ) be the solution of
y=r(), y(0)==
Take
5
Vi) = [ 47 (o) o) dt, 5> 0
0




fExampIe: Consider the system & = f(x) where f Is
continuously differentiable in the neighborhood of the origin
and f(0) = 0. Show that the origin is exponentially stable
only if A = [0f/0x](0) Is Hurwitz

f(x) = Az + G(z)z, G(xr) - 0asxz — 0
Given any L > 0, there is 1 > 0 such that
|G(=)|| < L, V|| <r

Because the origin of x = f(x) Is exponentially stable, let
V (x) be the function provided by the converse Lyapunov
theorem over the domain {||x|| < r¢}. Use V(x) as a
Lyapunov function candidate for x = Ax

o
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v 2 fw) Gy

—cs||z||® +C413||w||2

—(c3 — caL)||z||?

L
8
]

IA

Take L < c3/cq, 7 < (c3 —c4L) >0 =
oV :
AT < —7llzlI*, ¥ |lz|| < min{ro, r1}

The origin of & = Ax Is exponentially stable

o
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fConverse Lyapunov Theorem—-Asymptotic Stability

Let x = 0 be an asymptotically stable equilibrium point for
£ = f(x), where f is locally Lipschitz on a domain

D C R™ that contains the origin. Let R4 C D be the region
of attraction of = 0. Then, there is a smooth, positive
definite function V (x) and a continuous, positive definite
function W (x), both defined for all x € R 4, such that

V(r) > occasx — R4

8—Vf(:c) < —-W((x), V€ Ry
Ox

and forany ¢ > 0, {V (x) < c} Is a compact subset of R 4
LWhen Ry, = R™, V(x) is radially unbounded
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fTime-varying Systems
= f(t,x)

f(t, x) Is piecewise continuous in t and locally Lipschitz in
x forallt > 0andall x € D. The origin is an equilibrium
pointatt =0 If

f(t,0) =0, Vt>0
While the solution of the autonomous system
¢ = f(z), x(to) = o
depends only on (t — tg), the solution of
© = f(t,x), x(to)= o

Lmay depend on both ¢ and ¢

—p. 8/



fComparison Functions

# A scalar continuous function «(r), defined for » € [0, a)
IS said to belong to class KC if it Is strictly increasing and
«(0) = 0. Itis said to belong to class K If it defined
forall» > 0and a(r) — ccasr — oo

# A scalar continuous function 3(r, s), defined for
r € [0,a) and s € [0, 00) Is said to belong to class KL
If, for each fixed s, the mapping 3(r, s) belongs to class
JIC with respect to » and, for each fixed r, the mapping
B(r, s) Is decreasing with respect to s and 3(r,s) — 0
asS s — oo

—p. 9/



fExampIe o

® o(r) = tan—1(r) is strictly increasing since
o’(r) = 1/(1 4+ r?) > 0. It belongs to class K, but not
to class K since lim, o a(r) = 7/2 < oo

® «o(r) = r¢, for any positive real number ¢, Is strictly
increasing since o/ (r) = cr¢~! > 0. Moreover,
lim, - a(r) = oo; thus, it belongs to class K

® o(r) = min{r, r?} is continuous, strictly increasing,
and lim, _, - a(r) = oo. Hence, it belongs to class K
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f.o B(r,s) = r/(ksr + 1), for any positive real number k,
IS strictly increasing in r since

8 1

— = 0
or  (ksr + 1)2 >

and strictly decreasing in s since

op —kr?
kg <0
0s  (ksr + 1)?

Moreover, 3(r, s) — 0 as s — oo. Therefore, it belongs
to class KL

® 3(r,s) = rce~?, for any positive real number ¢, belongs
L to class ICL
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fDefinition: The equilibrium pointx = 0of & = f(t,x) IS

# uniformly stable if there exist a class K function a and a
positive constant ¢, independent of ¢y, such that

[z(@) || < a(l[z(to)]]), VE 2> 10 20, V ||z(to)]| <c

# uniformly asymptotically stable if there exist a class KL
function 3 and a positive constant ¢, independent of ¢,
such that

|z ()] < B(lz(to)ll; t—20), VE = to > 0, V [[z(to)]| < c

# globally uniformly asymptotically stable if the foregoing
iInequality is satisfied for any initial state x(#g)

—p. 12/



f.o exponentially stable if there exist positive constants c,
k, and X such that

lz(@®)l < kllz(to)le %), ¥ [[2(to) | < ¢

# (globally exponentially stable if the foregoing inequality
IS satisfied for any initial state x (o)
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fTheorem: Let the origin & = 0 be an equilibrium point for
= f(t,z) and D C R"™ be a domain containing = O.
Suppose f(t, x) is piecewise continuous in ¢ and locally
Lipschitzin xz forallt > 0and x € D. Let V(t,x) be a
continuously differentiable function such that

(1) Wi(z) S V (¢, z) < Wa(x)
2 W OV <
(2) 57 FYRACE

forallt > 0 and x € D, where Wi (x) and Wa(x) are
continuous positive definite functions on D. Then, the origin
IS uniformly stable

o

—p. 14/



- Theorem: Suppose the assumptions of the previous
theorem are satisfied with

o+ ft0) < ~Waa)

— + — T — T

ot Oox = 3

forallt > 0 and x € D, where Wj3(x) Is a continuous
positive definite function on D. Then, the origin is uniformly
asymptotically stable. Moreover, If » and ¢ are chosen such
that B, = {||z|| < r} C D and ¢ < min =, Wi(z), then

every trajectory starting in {x € B, | Wa(x) < c} satisfies
lz@) || < B(llz(to)ll,t —to), VE=>1to >0

for some class ICL function 3. Finally, if D = R™ and
W1 () Is radially unbounded, then the origin is globally
uniformly asymptotically stable
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fTheorem: Suppose the assumptions of the previous
theorem are satisfied with

kilz]|® < V(¢ ) < k]

ov. oV

—— t —f(t, ) < —ks]|z||®
o+ o f (@) < —kalla

forallt > 0 and x € D, where k1, k2, k3, and a are
positive constants. Then, the origin is exponentially stable.

If the assumptions hold globally, the origin will be globally
exponentially stable.

o

—p. 16/



fExampIe:

= —[1+g(t)]=® g(t)>0, V>0
Vix) = %wz
Vit,g) = —[1+gt)]zr < —z? VzeR,Vt>0

The origin is globally uniformly asymptotically stable

Example:

T1 —x1 — g(t)x2

L1 — L2

T2

0<g(t) <k and g(t) < g(t), Vt>0

o
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V(t,z) = 22 + [1 + g(t)]z3

i+ x5 < V(t,z) <z+ (1+k)xz, Vx e R?

V(t,x) = —222 + 2z122 — [2 + 2g(t) — g(t)]x3
2+ 2g(t) — g(t) > 2+ 2g9(t) — g(t) > 2

: 2 —1
V(t,z) < —2x2 + 2x122 — 225 = — T ;o |7

The origin is globally exponentially stable

o
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Perturbed Systems



fNominal System:

= f(x), [f(0)=0
Perturbed System:

t = f(x) + g(t,x), g(t,0) =0

Case 1: The origin of the nominal system is exponentially
stable

cifzl|* < V(z) < ezl

oV
P ACH IS —cs||z]|®

5 H H < calz|
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ste V (x) as a Lyapunov function candidate for the
perturbed system

Vit,e) = 2 f@) + 5 g(t,w)

Assume that

lg(t,x)|| < ~v|lx|]l, ~>0

oV
t
gt @)l

2 + cqv||z|?

V(t,x) —c3l|x||? +

IA

VA
|
)
9
8
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B o
v< 2
C4

V(t,z) < —(c3g — vea)||z|?

The origin is an exponentially stable equilibrium point of the
perturbed system
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r1 = I
2 = —4x1 —2x2+ Bx3, B >0
= Ax 4+ g(x)
0 1 0
A = 9 g(w): 3
—4 —2 Bxs
The eigenvalues of A are —1 + j+v/3
C. -
2 8
PA+ATP=—-T = P=
1 5
L L 8 16
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oV
V(z)=a'Pz, —Ax=—zlx
o

c3 =1, c4 =2 ||P|| = 2Amax(P) = 2 X 1.513 = 3.026
lg(z)|| = Bla=2|?

g(x) satisfies the bound ||g(x)|| < ~«||x|| over compact sets
of . Consider the compact set

Q.={V(z)<c}={z'Pzx<c}, ¢>0
ko = max |x3| = max [[0 1]z

T Px<c T Px<c
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fFact: -

max || Lz| = v ||LP~"/?||
T Px<c

Proof

1 1
tlPr<c o “2lPx<1 & = T pl/2 pl/24 <1

C C
1
= —— Pl/zw
V=7
max |[Lal| = max |[LVE P~/2y|| = v |[LPV?

.
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ke = max |[0 1]z| = +/c||[0 1]P~Y2|| = 1.8194v/¢c

T Px<c

lg(z)|| < B c(1.8194)%|z|, Va € Qe

lg@)|| < ~llzll, V&€ Qe v=08c(1.8194)°

< C3 o [3<: 1 0.1
TS s 3.026 x (1.8194)2¢ ¢

B<0.1/c = V(z) < —(1-108c)|z|?

Hence, the origin is exponentially stable and €. is an
estimate of the region of attraction

.
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fAIternative Bound on 3

V(a:) = —||lx 2—|—2:13TPg(ac)
< —llz||® + Bz} (]2 5]z)
< —lzl|? + Y2822 x|

Over Q., =5 < (1.8194)%c

Viz) < —(1—@@(1.8194)%) |||2

_ (1 _ Oﬁjg) |2

If 3 < 0.448/c, the origin will be exponentially stable and
Lﬂc will be an estimate of the region of attraction
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fRemark: The inequality 8 < 0.448/c shows a tradeoff
between the estimate of the region of attraction and the
estimate of the upper bound on 3
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fCase 2. The origin of the nominal system is asymptotically
stable

oV A% H oV

V(ta T) = 8—f(m)+8—g(t ) < —Wja(x)A g(t,x)

Under what condition will the following inequality hold?

H—g<t z)| < Wa(z)

Special Case: Quadratic-Type Lyapunov function

oV
S @ < —adi@), |G| < av@
Ir

.
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(

C3
with v < cn
M| < v (x),
t, )| <
It Jlg(

¢* (x)
) < —(e3 — ca)
Vit,z) <



fExampIe
&= —x° + g(t,x)

V(z) = x* is a quadratic-type Lyapunov function for the
nominal system & = —x?

oV
—(—x%) = ‘ = 4|x|®
ox

(]5(%) | 9 c3 = 4, cqag =4

Suppose |g(t, z)| < v|z|®>, YV, with~y <1

V(t,z) < —4(1 — v)d*(z)

Hence, the origin is a globally uniformly asymptotically
stable
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fRemark: A nominal system with asymptotically, but not
exponentially, stable origin is not robust to smooth
perturbations with arbitrarily small linear growth bounds

Example
&= —x° + vy

The origin is unstable for any v > 0
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fMemorerss Functions

e

(a) (b)

power inflow = wuy

Resistor is passive if uy > 0
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\_J /
u / u

(a) (b) (c)
Passive Passive Not passive

y = h(t,u), h € [0,o0]
Vector case:

y:h(tau)v hT: hla h29 Tt hp

L power inflow = XP__w;y; = uly
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fDefinition: y = h(t,u) IS

K

9o

passive if ul'y > 0
lossless if uly =0

input strictly passive if uly > u? p(u) for some
function o where ul'p(u) > 0,V u # 0

output strictly passive if ul'y > y? p(y) for some
function p where yT'p(y) > 0,Vy #0

—p. 4/



fSector Nonlinearity: h belongs to the sector [a, 3]
(h € o, B]) If
au? < uh(t,u) < Bu’

(@ o>0 (b) a<0

o Also, h € (a,8], h € [a,8), h € (a,B)
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|7 o
au? < uh(t,u) < pu® < [h(t,u) — oul[h(t,u) —Bu] <0

Definition: A memoryless function h(t, u) Is said to belong
to the sector

® [0,00] if ulh(t,u) >0

® [Ki,o00] iful'[h(t,u) — Kiu] >0

® [0, Ko] with Ko = KT > 0if
hl (t,u)[h(t,u) — Kou] <0

o [Ki,Ks]withK = Ky — Ky = K? >0if

L [h(t,u) — Kiu]l[h(t,u) — Kou] <0
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fExampIe

h(u) = ha(u1)

0
Kl p— al , K2 —
0 92
h € [Kl,Kz]

_51 0
0 B
0
B2 — az

, h; €lai,Bi], Bi>a; 1=1,2
ha(uz2)
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fExampIe

|h(uw) — Lu|| < ~|ull
Ki=L—~I, Ko=L4+~I

[h(u) — K1u]" [h(u) — Kau] =
IR(u) — Lul|* — ¥*|lul|* < 0

K:KQ—K1:2")’I
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fA function in the sector |[K;, K2| can be transformed into a
function in the sector [0, oo] by input feedforward followed
by output feedback

Y

Y

+=”>—> K1 y = h(t,u) —+>©

A A

_I_

Y
[

Feedforward K1 Feedback
[KviZ] [09 K] [09 I] [Oa OO]

—> —> —>
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fState Models

Vo = hQ(Zg) L

—

Yy

_|_
)

ANAF—"20

10 4+ Uy — 1L

i1)

’1:1 = hl(’Ul) Vc C U3 §

u — hz(wl) — L2
x1 — h3(x2)
1 —|— hl(u)

’1:3 — hg(’vg)
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Vix) = %La}% + %Ca}g

/0 w(s)y(s) ds > V(x(t)) — V(2(0))
w(t)y(t) > V(@(t), u(t))

Lxix1 + Cxoxe

r1|u — ho(x1) — 2| + x2[®1 — h3(x2)]

r1|u — ho(x1)] — x2hs(x2)

(1 + hi(uw)]u — uhi(uw) — x1ha(x1) — x2hs(x2)
uy — uhi(u) — x1ha(x1) — x2hs(x2)



|7 uy = V + uhq(uw) + x1ha(x1) + x2hs(x2)

If h1, he, and hs are passive, uy > V and the system is
passive

Case 1: If hy = hy = hg = 0, then uy = V’; no energy
dissipation; the system is lossless

Case 2: If hy € (0,00] (uh1(w) > 0 for u # 0), then
uy >V + uhq(u)

The energy absorbed over [0, t] will be greater than the
Increase in the stored energy, unless the input w(t) IS
Lidentically zero. This Is a case of input strict passivity
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fCase 3: If hy = 0and he € (0, o], then

y =z, and uy >V + yha(y)

The energy absorbed over [0, t] will be greater than the
Increase in the stored energy, unless the output y IS
identically zero. This is a case of output strict passivity

Case 4: If hy € (0,00) and hs € (0, 00), then

uy Z V —+ w1h2($1) —+ $2h3($2)

x1ha(x1) + x2h3(x2) IS a positive definite function of x.

This Is a case of state strict passivity because the energy

absorbed over [0, t] will be greater than the increase in the
Lstored energy, unless the state x Is identically zero

—p. 13/1



fDefinition: The system

T = f(x,u), y = h(x,u)

IS passive If there Is a continuously differentiable positive
semidefinite function V' (x) (the storage function) such that

. A%
uwly >V =

= — %Jc(wau)a vV (x,u)

Moreover, it is said to be
® losslessifuly =V

» input strictly passive if uTy > V 4+ uT ¢ (u) for some
L function ¢ such that u?'p(u) > 0, Vu #£ 0
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f.o output strictly passive if uTy > V + yT p(y) for some
function p such that yT'p(y) > 0, Vy # 0

» strictly passive if uTy > V + 4 («) for some positive
definite function

Example
T = u, Yy =

V(z) =22 = wy=V = Lossless
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fExampIe o

T = u, y=x + h(u), h € [0, o0]

V(x) = %:1:2 = uy =V +uh(u) = Passive
h € (0,00] = uh(u)>0Vu#0
= Input strictly passive
Example

£ = —h(x) 4+ u, y=x, h € |0,o0]

V(x) = %a:z = wuy =V +yh(y) = Passive
L h € (0,00] = Output strictly passive

—p. 16/



~ Example -

t=u, y=h(x), he]l0,o0]

Vi) = /aB h(oc)do = V = h(z)& =yu = Lossless
0
Example
at = —x+u, y=h(x), he]l0,o0]
Vi(x) = a,/ow h(o)do = V = h(z)(—z+u) = yu—zh(x)

yu =V + xzh(x) = Passive

L h € (0,00] = Strictly passive

—p. 17/
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fDefinition: A p X p proper rational transfer function matrix
G (s) Is positive real if

# poles of all elements of G(s) are in Re[s] < 0

o for all real w for which jw is not a pole of any element of
G (s), the matrix G(jw) + G* (—jw) is positive
semidefinite

# any pure imaginary pole jw of any element of G(s) Is a
simple pole and the residue matrix
lims_, ., (s — jw)G(s) Is positive semidefinite Hermitian

G(s) Is called strictly positive real if G(s — €) IS positive real
forsome e > 0

o -
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fScalar Case (p = 1):
G(jw) + G' (—jw) = 2Re[G(jw)]

Re|G(jw)] Is an even function of w. The second condition
of the definition reduces to

Re|G(jw)] 2 0, Vw € [0, 00)

which holds when the Nyquist plot of of G(jw) lies in the
closed right-half complex plane

This is true only If the relative degree of the transfer function
IS zero or one

o
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fLemma: A p X p proper rational transfer function matrix
G (s) Is strictly positive real if and only if

® G(s) Is Hurwitz
® G(jw)+ G (—jw) >0, VwER
® G(o0) +GY(x) >0o0r

lim w?®P~9 det[G(jw) + GT (—jw)] > 0

w— 00

where ¢ = rank[G(oco) + GT (00)]
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fScalar Case (p = 1): G(s) Is strictly positive real if and only
If
® G(s) Is Hurwitz
® Re|G(jw)] >0, Vw € [0, 00)
® G(oo) >0o0r

lim w?Re[G(jw)] >0

w— 00
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Example:
1
G(s) = —
S

has a simple pole at s = 0 whose residue Is 1

Re|G(jw)] = Re 1 =0, Vw#0

Jw

Hence, G Is positive real. It is not strictly positive real since
1
(s —e)
has a pole in Re[s] > 0foranye > 0

o -
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~ Example:

1
G(s) = ——, a > 0, Is Hurwitz
s+ a
Re|[G(jw)] = a2 >0, Yw € [0,00)
. 2 . . w2a .
lim w?Re|G(jw)] = lim =a>0 = GIsSPR
W— 00 Ww—00 (Y2 -+ a?
Example:
1 1 — w?
G — 0 R G ) p—
(5) s24+s+1 elGw)] (1 — w?)? + w?
G is not PR

o -
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~ Example:
- s+2 1 7

s+1 s+2
G(s) = IS Hurwitz
—1 2
| s+2 s+1 _

- 2(24w?)  —2jw
1+w? 4+ w?2

G(jw) + Gt (—jw) = >0, YVwER
2w 4
L 4+4w? 14+w? -
_ 5 0 _
G(00) + G (o0) = 0ol 171

lim w?det[G(jw) + GT(—jw)] =4 = GisSPR

w— 00
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fPositive Real Lemma: Let

G(s)=C(sI — A)"'B+D

where (A, B) is controllable and (A, C) Is observable.
G (s) Is positive real if and only if there exist matrices

P = PT > 0, L, and W such that

PA+ ATP
PB
wiw

iy 2
ct —Tw
D + DT

- p. 9/~



fKaIman—Yakubovich—Popov Lemma: Let
G(s)=C(sI — A)"'B+D

where (A, B) is controllable and (A, C) Is observable.
G (s) Is strictly positive real if and only if there exist matrices

P = P! > 0, L, and W, and a positive constant € such
that

PA+ ATP = —ILTL —¢cP
PB = ct —LTw
W'W = D+ D'

—p. 10/7



Lemma: The linear time-invariant minimal realization

r = Ax + Bu
y = Cx+ Du
with
G(s)=C(sI—A)"'B+D
IS
# passive if G(s) is positive real

# strictly passive if G(s) Is strictly positive real

Proof. Apply the PR and KYP Lemmas, respectively, and
use V(z) = zzT Pz as the storage function

o

—p. 11/7



|7 oV
uly — — (Axz + Bu)
o
= ul'(Cx 4 Du) — ' P(Ax 4+ Bu)
= w!l'Cx + %uT(D + DT)u
— %:cT(PA + AT P)z — 2T PBu
= v (B'"P+W'L)x + zu" W Wu
- %wTLTLZB - %ESCBTPCE — 2'PBu

= %(La; + Wu)l (Lx + Wu) + %eajTPw > lex! Px

1

2
In the case of the PR Lemma, € = 0, and we conclude that
the system is passive; in the case of the KYP Lemma,

Le > 0, and we conclude that the system is strictly passive

—p. 1217



fConnection with Lyapunov Stability

Lemma: If the system

T = f(x,u), y = h(x,u)

IS passive with a positive definite storage function V (x),
then the origin of & = f(«,0) Is stable

Proof:

oV oV
U'Ty > —f(z,u) = —f(x,0) <0
or o

—p. 13/7



fLemma: If the system
Cb:f(mau)a y:h(mau)

IS strictly passive, then the origin of & = f(x,0) IS
asymptotically stable. Furthermore, if the storage function
IS radially unbounded, the origin will be globally
asymptotically stable

Proof: The storage function V' (x) is positive definite

oV oV
T ox

Why is V' (x) positive definite? Let ¢(t; x) be the solution
LOf z = f(z,0), z(0) =«

—p. 1417



V < —y(x)
V(d(r,z)) — Viz) < — /0 L (d(tia)) dt, VT € [0,d
V(g(r,2) >0 = V(z)> /()T¢<¢(t;m)) dt

VZ)=0 = /()T¢(¢(t;§3)) dt =0, VT e€l0,0]

= Y(o(t;2) =0 = ¢(t;2) =0 = =0



fDefinition: The system
Cb:f(wau)a y:h(mau)

IS zero-state observable if no solution of & = f(x,0) can
stay identically in S = {h(x,0) = 0}, other than the zero
solution z(t) =0

Linear Systems
r—=Ax, y=Cx
Observabillity of (A, C) Is equivalent to

y(t) = CeMz(0) =0 < z(0) =0 < x(t) =0

o -
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~ Lemma: If the system

r = f(x,u), y = h(x,u)

IS output strictly passive and zero-state observable, then
the origin of = f(x, 0) Is asymptotically stable.
Furthermore, if the storage function is radially unbounded,
the origin will be globally asymptotically stable

Proof: The storage function V' (x) is positive definite

oV oV
uly > - f (@) +ylply) = —f(x,0) < —ylp(y)
€T ox

Vize(t) =0 = y(t) =0 = z(t) =0
LAppIy the invariance principle

—p. 1717



fExampIe o

. . 3
r1 = T2, L2 = —axr] —kra+u, y=x2, a,k>0

Vix) = %aa}‘ll + %wg

V = a,a;‘;’:cz + mg(—awi’ — kxo +u) = —ky? + yu

The system is output strictly passive
y(t) =0 & x3(t) =0 = ax3(t) =0 = z1(t) =0

The system is zero-state observable. V is radially
unbounded. Hence, the origin of the unforced system is
globally asymptotically stable

o -
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