عنوان المحاضرة

الحالات الخاصة لمسائل النقل

تطرقنا في المحاضرات السابقة لحل مسائل النقل في حال توفر شرطين اساسيين:

. $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$: أولهما : تساوي الطلب مع العرض

و ثانيهما: تحقق شرط عدد الحلول المكنة (m+n-1).

لكن الحقيقة أن شرط تساوي الطلب مع العرض هو واقع نظريا فقط، بينما يصعب تحققه في الوضعية الاقتصادية حيث اما أننا نجد الطلب أكبر من العرض أو العكس.

و لحل هذه المشكلة نتبع الخطوات التالية:

أ/ حالة الطلب أكبر من العرض:

حيث نكون هنا أمام نقص في كميات المعروضة مقابل الطلب المتاح أي

و في هذه الحالة وجب زيادة سطر وهمي نحقق به $\sum_{i=1}^n b_i > \sum_{i=1}^m a_i$ التوازن كما هو موضح في المثال التالي

مراكز	D1	D2	D3	العرض
مصادر				
A	31	21	24	500
В	20	21	30	800
С	23	20	15	500
الطلب	300	900	800	2000

و يلاحظ أن مجموع الطلب يساوي 2000 و هو أكبر من العرض 1800، و عليه نضيف سطر وهمى لنحقق به التوازن شريطة أن تكون قيمة العرض في هذا السطر مساوية للفرق بين الكميات المطلوبة و المعروضة أي 2000-1800 = 200.

بينما تكاليف النقل في هذا السطر الوهمي تكون معدومة.

وعليه جدول النقل يكون كالتالى:

مراکز مصادر	D1	D2	D3	العرض
A	31	21	24	500
В	20	21	30	800
С	23	20	15	500
D سطر وهمي	00	00	00	200
الطلب	300	900	800	2000

و نقوم بحل المسألة باستعمال احدى الطرق التي تطرقنا لها في المحاضرات السابقة. فباستخدام طريقة التكلفة الدنيا نجد الحال التالى:

الدكتور شتاتحة عمر 2 omarofr@yahoo.fr

مراکز مصادر		D1		D2		D3	العرض
A	31		21		24		500
				200		300	300
В	20		21		30		000
		300		500			800
С	23		20		15		500
						500	300
D سطر وهمي	00		00		00		200
				200			200
الطلب		300		900		800	2000
الطنب		300		500			2000

ملاحظة : عند الحل بطريقة التكلفة الدنيا نأخذ في الحسبان التكاليف الجديدة للسطر الوهمي الذي اضفناه، و نختار بشكل عشوائي ففي المثال السابق اخترنا العمود الثاني D2 و الذي يحتاج كمية قدرها 900 وحدة و أعطيناه قيمة 200 وحدة التي يمكن للمصدر الوهمي امداده بها، و هكذا نستمر.

الأن نتحقق من عدد الحلول الممكنة و هي 6 = 1-3+4 و بالتالي فالحل الاولى مقبول لكن علينا ان نتحقق إذا كان هو الحل الامثل و ذلك باستخدام احدى الطرق اما طريقة التخطي أو التوزيع المعدل.

باستخدام طريقة التوزيع المعدل:

نعتبر ان V_i تعبر عن الأعمدة (المراكز) .

U تعبر عن الأسطر (المصادر).

و بالتالى نحقق المعادلات التالية:

$$U_1 + V_2 = 21 \rightarrow U_1 = 0 \cdot V_2 = 21$$

$$U_1 + V_3 = 24 \rightarrow V_3 = 24$$
.

$$U_2 + V_2 = 21 \rightarrow U_2 = 0$$
.

$$U_2 + V_1 = 20 \rightarrow V_1 = 20$$
.

$$U_3 + V_3 = 15 \rightarrow U_3 = -9$$
.

$$U_4 + V_2 = 0 \rightarrow U_4 = -21$$
.

δ	$\boldsymbol{\delta_{IJ}}$ = C_{ij} - U_i - V_j	$U_i \cdot V_j$
11	31-0-20	$U_1.V_1$
6	30-0-24	U_2 . V_3
12	23 - (-9) -20	$U_3.V_1$
8	20 - (-9) - 21	U ₃ . V ₂
1	0 - (-21) - 20	U ₄ . V ₁
-3	0 - (-21) - 24	U ₄ . V ₃

بما أن هناك قيمة حدية سالبة أى أن هذا الحل لا يعتبر الامثل و هناك حل أخر يعطينا أقل تكلفة اجمالية. و عليه نقوم بتعديل النموذج عبر ادخال الخانة (U_4, V_3) . و نستمر بنفس الطريقة . إلى أن نصل إلى عدم وجود قيم سالبة في القيمة الحدية لنعتمد بذلك الحل الأمثل و نعتبر عندئذ التكلفة المحققة بالتكلفة الدنيا.

 (U_4, V_3) اذن ندخل الخانة

D2 D3 $^{\sim}$ $^{\downarrow}$ -1 300 200 21 30 500 20 500 200

- نقوم بإضافة وحذف تكلفة واحدة ثم نختار اقل تكلفة في الزوايا السالبة (أي أقل تكلفة في الخانات التي فيها 1-) أي نختار الخانة (U4. V2). و التي تحوي قيمة .200

و يكون جدول المحاولة الثاني بعد التصحيح كالتالي:	التالى:	التصحيح ك	الثاني بعد ا	المحاولة	جدول	و يكون
--	---------	-----------	--------------	----------	------	--------

مراكز		D1		D2		D3	العرض
مصادر							
Α	31		21		24		500
				400		100	500
В	20		21		30		800
		300		500			800
С	23		20		15		500
						500	500
D سطر وهمي	00		00		00		200
						200	200
الطلب		300		900		800	2000

و نستمر في اختبار أمثلية الحل عبر استخدام طريقة التوزيع المعدل:

$$U_1 + V_2 = 21 \rightarrow U_1 = 0 \cdot V_2 = 21$$

$$U_1 + V_3 = 24 \rightarrow V_3 = 24$$
.

$$U_2 + V_2 = 21 \rightarrow U_2 = 0$$
.

$$U_2 + V_1 = 20 \rightarrow V_1 = 20$$
.

$$U_3 + V_3 = 15 \rightarrow U_3 = -9$$
.

$$U_4 + V_3 = 0 \rightarrow U_4 = -24$$
.

δ	$\boldsymbol{\delta_{IJ}}$ = C_{ij} - U_i - V_j	U_i . V_j
11	31-0-20	U_1 . V_1
6	30-0-24	U_2 , V_3
12	23 - (-9) - 20	$U_3.V_1$
8	20 - (-9) - 21	U ₃ . V ₂
4	0 - (- 24) - 20	U ₄ . V ₁
3	0 - (- 24) - 21	U ₄ . V ₂

بما أنه لا يوجد قيمة حدية سالبة فيعتبر هذا الحل هو الامثل، وتكون التكلفة الاجمالية Z=34800 ميث تعتبر هذه أقل تكلفة ممكنة و أفضل مسار

ملاحظة : عند الوصول إلى الحل الامثل نقوم بحذف السطر الوهمي الذي اضفناه.

ب/ حالة الطلب أقل من العرض:

حيث نكون هنا أمام نقص في كميات المعروضة مقابل الطلب المتاح أي

و في هذه الحالة وجب زيادة عمود وهمي نحقق به $\sum_{i=1}^n b_i < \sum_{i=1}^m a_i$ التوازن و بنفس الطريقة نستمر في ايجاد الحل الأولي و اختبار أمثليته، و عند الوصول إلى الحل الأمثل نقوم بحذف العمود الوهمي الذي أضفناه.

ج/ حالة عدم تحقق شرط الحلول الممكنة:

حيث نصطدم أحيانا عند ايجاد الحل الأولي بمشكلة عدم تحقق شرط الحلول المكنة m+n-1 ، و لتجاوز هذه المشكلة نقوم بإضافة قيمة ع حيث تعتبر قيمة مقاربة للصفر في احدى الخانات، ثم نقوم بعد ذلك بإيجاد الحل الامثل ثم نهملها عند النهاية و قد تحصل مشكلة التفكك هذه سواء في جدول الحل الاساسي او جداول المحاولات التي تليها. كما هو موضح في المثال التالي

لعرض	D3	D2	D1	واكل معادر
50	.8	6	4 50	A
30	4	12	7	В
80	2 30	5 50	9	C
30	6	10 30	11	D
200	30	120	50	الطلب

مراکز مصادر	D1	D2	D3	العرض
A	50	6	8	50
В	7	12 40	4	30
С	9	5 50	2 30	80
D	11	30	6	30
الطلب	50	120	30	200

و نستمر في الحل و عند ايجاد الحل الامثل نهمل قيمة ٤ التي اضفناها .

الدكتور شتاتحة عمر 6 omarofr@yahoo.fr