Exercices corrigés sur les intégrales simples

Exercice1: Déterminer toutes les primitives des fonctions suivantes :

$$g(x) = \frac{e^{3x}}{1 + e^{3x}}$$

$$k(x) = \cos x \sin^2 x$$

$$l(x) = \frac{1}{x \ln x}$$

$$m(x) = 3x\sqrt{1 + x^2}$$

Corrigé:

- 1) On reconnait que $g(x) = \frac{1}{3} \times \frac{u'(x)}{u(x)}$ avec $u(x) = e^{3x} > 0$. Les primitives $G(x) = \frac{1}{3} \ln(1 + e^{3x}) + c \quad c \in IR$ de g sont donc les fonctions de la forme
- 2) On reconnait que $k(x) = \frac{1}{3}.u'(x).u^{2}(x)$ avec $u(x) = \sin x$. Les primitives $k(x) = \frac{1}{3}\sin^{3} + c \quad c \in IR$ de k sont donc les fonctions de la forme
- 3) En écrivant $l(x) = \frac{\frac{1}{x}}{\ln x}$, on reconnait que $l(x) = \frac{u'(x)}{u(x)}$ avec $u(x) = \ln x$. Les primitives de l sur l'intervalle $]1,+\infty[$, sont donc les fonctions de la

forme $l(x) = \ln(\ln x) + c \ c \in IR$

4) On reconnait que $m(x) = \frac{3}{2}.u'(x).\sqrt{u(x)}$ avec $u(x) = 1+x^2 \text{ . Les}$ forme $m(x) = (1+x^2)^{\frac{3}{2}} + c \quad c \in IR$

Exercice2: En effectuant un changement de variables, donner une primitive des fonctions suivantes :

$$f(x) = \frac{\ln x}{x} \qquad g(x) = \cos \sqrt{x}$$

Corrigé

$$f(x) = \frac{\ln x}{x}$$

 $f(x) = \frac{\ln x}{x}$ est définie et continue sur]0,+∞[intervalle sur lequel on cherche à calculer une primitive. Pour cela, on fait le changement de

 $du = \frac{dx}{x}$ et on trouve variables $u = \ln x$, de sorte que

1. La fonction $g(x) = \cos \sqrt{x}$ est définie et continue sur $]0,+\infty[$ intervalle sur lequel on cherche à calculer une primitive. Pour cela, on effectue le changement de variables $u=\sqrt{x}$, de sorte que $u^2=x$ ou 2udu = dx . On trouve alors

$$\int \cos \sqrt{x} \, dx = 2 \int u \cos(u) \, du$$

$$= 2u \sin u - 2 \int \sin(u) \, du$$

$$= 2u \sin u + 2 \cos u + c \quad c \in IR$$

$$= 2\sqrt{x} \sin \sqrt{x} + 2 \cos \sqrt{x} + c \quad c \in IR$$

(on a aussi effectué une intégration par parties).

Donner une primitive des fonctions suivantes :

Exercice3: Donner une primitive des fonctions suivantes :

$$f(x) = \frac{1}{x^2 + 4}$$

$$g(x) = \frac{1}{x^2 + 4x + 5}$$

$$h(x) = \frac{1}{1 - x^2}$$

Corrigé

$$f(x) = \frac{1}{x^2 + 4} = \frac{1}{2^2} \frac{1}{(\frac{x}{2})^2 + 1}$$

On remarque simplement que

$$f(x) = \frac{1}{x^2 + 4}$$
 est donc de la forme:
$$F(x) = \frac{1}{2} \operatorname{arctg} \frac{x}{2} + c \quad c \in IR$$

2. On écrit le dénominateur sous forme

canonique,
$$g(x) = \frac{1}{x^2 + 4x + 5} = \frac{1}{(x+2)^2 + 1}$$
. La méthode précédente donne

$$\int g(x) dx = \int \frac{dx}{(x+2)^2 + 1}$$

$$i \operatorname{arctg}(x+2) + c \quad c \in IR$$

Le dénominateur se factorise en $1-x^2=(1-x)(1+x)$.

On sait donc qu'il existe $a,b \in IR$ tels que

$$h(x) = \frac{1}{1-x^2} = (\frac{a}{1-x} + \frac{b}{1+x})$$

En mettant tout au même dénominateur et en procédant par identification, on trouve

$$h(x) = \frac{1}{1-x^2} = \frac{1}{2} \left(\frac{1}{1-x} + \frac{1}{1+x} \right)$$

Une primitive de
$$h(x) = \frac{1}{1-x^2}$$
 est donc $H(x) = \frac{1}{2} \ln|1-x| + \frac{1}{2} \ln|1+x|$