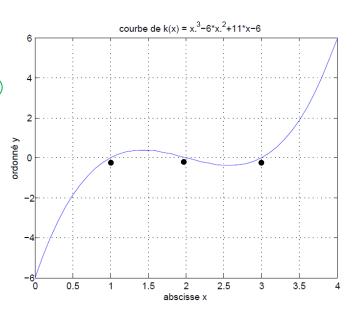
Université Ziane Achour - Djelfa Faculté des Sciences Exactes et Informatiques

TP Méthodes Numériques et Programmation Licence Physique/L2/S 3/ Janvier 2020

Nom:	Prénom:	Matricule:	Gr: SGr:
	Test – Sujet a –	Corrigé Note: 7.5 /	7.5

1 - Ouvrez un nouveau fichier M dans Matlab et nommez le : votre nom.m , en suivant le chemin suivant: 0.5

Notes:


- Les réponses dans ce qui suit doivent être réalisées dans ce fichier.
- Pour exécuter le programme, utilisez : l'icône (Run) ou la commande (>> votre nom)

2 - Complétez le tableau suivant :

Forme Mathématique	Commandes sous Matlab	Résultats	
$A = \sum_{i=2}^{20} \sum_{j=1}^{9} \sum_{k=3}^{7} \frac{\sqrt{k \times j^3}}{\cos i}$	A=0; for i=2:20 for j = 1:9 for k=3:7 A=A+(sqrt(k+j^3)/cos(i)); end end end A	A = 1.2985e+005 (=1.2985*10 ⁵)	
$B = \sum_{i=5}^{10} \sum_{j=6}^{30} \log(i + \sin j)$	B=0; for i=5:10 for j = 6:30 B=B+log(i+sin(j)); end end B	B = 297.4515	
$C = \sum_{\substack{i=1\\i=impair}}^{47} \left(5i^3 + 3i\right)$ 0.75	C=0; for i=1:2:47 C=C+(5*i^3+3*i); end C	C = 3316608 0.5	
$x_i = 2i^2$, $i = 1, 2, 3, 4, 5$	for i=1:5 xi=2*i^2 end	$x_1 = 2$ $x_2 = 8$ $x_3 = 18$ $x_4 = 32$ $x_5 = 50$ 0.5	

3 – On considère la fonction : $k(x) = x^3 + 6x^2 + 11x - 6$ et x = [0; 4]

- Tapez puis exécutez le programme suivant :

- Quel est le rôle de la commande **grid on** ?

La commande **grid on** dessine une grille (des axes perpendiculaires) dans la figure actuelle. Grace à cette grille, on peut faire la lecture des valeurs sur les axes des abscisses et des ordonnés.

- Déterminez des intervalles plus petits contenant les racines de la fonction k(x). D'après le graphe, il y a trois racines :

Racine $1 \in [0.5; 1.5]$

Racine $2 \in [1.5; 2.5]$

Racine $3 \in [2.5; 3.5]$

1

0.5

```
A=0;
for i=2:20
for j = 1:9
for k=3:7
A=A+(sqrt(k+j^3)/cos(i));
end
end
end
Α
B=0;
for i=5:10
for j = 6:30
B=B+\log(i+\sin(j));
end
end
В
C=0;
for i=1:2:47
C=C+(5*i^3+3*i);
end
С
for i=1 :5
xi=2*i^2
end
x = [0 : 0.1:4];
k=0 (x) x.^3-6*x.^2+11*x-6;
plot (x, k(x))
grid on
xlabel('abscisse x')
ylabel('ordonné y')
Title('courbe de k(x) = x.^3-6*x.^2+11*x-6')
```