FACULTÉ DES SCIENCES EXACTES ET INFORMATIQUE

<u>APPLICATION – LEÇON N°09</u>

MODULE : MÉCANIQUE ANALYTIQUE. DURÉE : 40 Minutes.

Non	n et P	rénor	n :													Gro	upe :		
Note	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,25	4,50	4,75	5,00

Un <i>cylindre plein</i> de masse $M=3m$ et de rayon a roule sans glisser, uniquement sous l'effet de son poids, à l'intérieur d'une cavité cylindrique de rayon $R=4a$ (figure ci-contre). Nous fixons sur l'axe du cylindre un pendule simple constitué d'une tige rigide de longueur $l=3a$ et de masse négligeable à son extrémité se trouve une masse ponctuelle m . La tige n'est pas solidaire au cylindre (elle ne tourne pas avec le même angle) et les frottements avec l'air sont négligeable.
1. Ecrire la condition de roulement sans glissement. Quel est le nombre de degrés de liberté ?
2. Ecrire la vitesse $ec v_m$ de la masse m et son module v_m dans le référentiel fixe $(0xy)$. Cas des petites oscillations autour de l'équilibre : On prendra $\cos(heta-m{arphi})pprox 1$ dans l'expression de v_m .
3. Ecrire le Lagrangien ${\cal L}$ du système.

• • •		
• • •		
4.	4. Ecrire les équations de Lagrange du système et en déduire les équations du mouvement (petits angles	s).
• • •		
• • •		
• • •		
5.	5. En posant les solutions particulières de ces équations sous la forme :	
	$\theta(t)=A_1.\sin(\omega.t+\phi_i)\text{et} \varphi(t)=A_2.\sin(\omega.t+\phi_i)$ Trouver les pulsations propres du système.	
•••		
	Trouver les pulsations propres du système.	
	Trouver les pulsations propres du système.	
	Trouver les pulsations propres du système.	