

FACULTÉ DES SCIENCES EXACTES ET INFORMATIQUE

CORRIGÉ DE L'ÉPREUVE DE RATTRAPAGE

MODULE : RELATIVITÉ RESTREINTE DURÉE TOTALE : 60 minutes. **(Feuille 1/2)**

Nom et Prénom : John Doe Sig	ignature :	Note: /2	0
------------------------------	------------	----------	---

Exercice 01 : Transformation de Lorentz-Poincaré (10 points)

On se propose d'établir la transformation de Lorentz-Poincaré entre les coordonnées (ct,x) d'un point matériel M dans un référentiel galiléen $\mathcal{R}(Ox)$ et les coordonnées (ct',x') du même point matériel dans un référentiel $\mathcal{R}'(O'x')$ se déplaçant avec une vitesse uniforme $\vec{v}=v_e.\vec{e}_x$ par rapport à \mathcal{R} . Pour se faire, nous utilisons les propriétés de cette transformation. La linéarité de la transformation impose d'écrire

propriétés de cette transformation. La linéarité de la transformation impose d'écrire
$\begin{cases} x = k.x' + l.ct' \\ ct = m.x' + n.ct' \end{cases}$
Tel que k, l, m, n sont des constantes réelles.
1. En utilisant la réciprocité de la transformation ($\mathcal R$ se déplace avec une vitesse $-v_e.\vec e_x$ par rapport à $\mathcal R'$) et l'invariance de la vitesse de la lumière dans les deux référentiels, trouver les valeurs des constantes k,l,m,n en fonction de β_e tel que $\beta_e=v_e/c$.
Sí nous nous plaçons à l'origine $0'$ nous aurons $x'=0$ et $x=v_e.t$
Ce quí donne $ \begin{cases} v_e.t = l.ct' \dots \dots (1) \\ ct = n.ct' \dots (2) \end{cases} $
En divisant (1)/(2) nous obtenons $l = \beta_e \cdot n$
Sí nous nous plaçons à l'origine 0 nous aurons $x=0$ et $x'=-v_e.t'$
Ce quí donne $\begin{cases} k. v_e. t' = l. ct' & \dots $
De l'équation (3) nous avons $l = \beta_e.k$ et $k = n$
Donc la transformation s'écrit $\begin{cases} x = k.(x' + \beta_e.ct') \\ ct = m.x' + k.ct' \end{cases}$
Invariance de la vitesse de la lumière dans \mathcal{R}
Invariance de la vitesse de la lumière dans \mathcal{R}'
\mathbb{Z} En remplaçant x et \mathcal{L} trouvés précédemment dans l'équation (5)
$(k^2 - m^2) x'^2 + 2k(k\beta_e - m) \cdot x' \cdot ct' = k^2 (1 - \beta_e^2) \cdot c^2 t'^2$
En comparant avec l'équation (6) il vient que
$(k^2 - m^2) = 1 2k(k\beta_e - m) = 0 k^2(1 - \beta_e^2) = 1$
Donc
$k = (1 - \beta_e^2)^{-1/2} = \gamma_e$ $m = k\beta_e = \gamma_e \beta_e$
Et
$ l = k\beta_e = \gamma_e \beta_e \qquad n = k = \gamma_e $

D'où la transformation de Lorentz

$$\begin{cases} x = \gamma_e(x' + \beta_e.ct') \\ ct = \gamma_e(\beta_e.x' + ct') \end{cases}$$

2. Montrer alors que la valeur $s^2=c^2t^2-x^2-y^2-z^2$ est invariante par la transformation ainsi obtenue.

. En remplaçant x,y,z et ct par la transformation de Lorentz, nous avons....

(avec y = y' et z = z')...

$$s^{2} = \gamma_{e}^{2} (1 - \beta_{e}^{2}) \cdot c^{2} t'^{2} - \gamma_{e}^{2} (1 - \beta_{e}^{2}) x'^{2} - y'^{2} - z'^{2}$$

... Ce quí donne

$$s^{2} = c^{2}t'^{2} - x'^{2} - y'^{2} - z'^{2} = s'^{2}$$

D'où, la valeur $s^2 = c^2t^2 - x^2 - y^2 - z^2$ est invariante par la

transformation de Lorentz-Poincaré

3. En posant $\beta_e = \tanh r_e$ trouver la forme hyperbolique de la transformation de Lorentz-Poincaré.

La rapidité r_e étant donnée par β_e = tanh r_e

Donc

$$\gamma_e = \frac{1}{\sqrt{1 - \beta_e^2}} = \frac{1}{\sqrt{1 - \tanh^2 r_e}}$$

Comme

$$1 - \tanh^2 r_e = 1 - \frac{\sinh^2 r_e}{\cosh^2 r_e} = \frac{\cosh^2 r_e - \sinh^2 r_e}{\cosh^2 r_e} = \frac{1}{\cosh^2 r_e} \implies \qquad \gamma_e = \cosh r_e$$

La transformation de Lorentz s'écrit alors sous la forme

$$\begin{cases} x = \cosh r_e (x' + \tanh r_e . ct') \\ ct = \cosh r_e (\tanh r_e . x' + ct') \end{cases}$$

Comme $\cosh r_e \cdot \tanh r_e = \sinh r_e$

Nous obtenons la forme hyperbolíque de la transformation de Lorentz

$$\begin{cases} x = \cosh r_e \cdot x' + \sinh r_e \cdot ct' \\ ct = \sinh r_e \cdot x' + \cosh r_e \cdot ct' \end{cases}$$

FACULTÉ DES SCIENCES EXACTES ET INFORMATIQUE

CORRIGÉ DE L'ÉPREUVE DE RATTRAPAGE

MODULE : RELATIVITÉ RESTREINTE DURÉE TOTALE : 60 minutes. (Feuille 2/2)

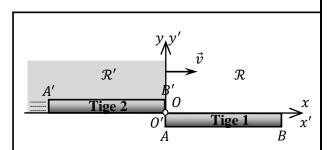
Nom et Prénom : John Doe

Signature:

Exercice 02: (10 points)

Considérons deux tiges AB et A'B' ayant des Iongueurs propres $l_{propre} = L$ et $l'_{propre} = \alpha.L$. La tige A'B' glisse sur la tige AB à une vitesse constante $\vec{v} = v.\vec{e}_x$. \mathcal{R} et \mathcal{R}' sont les deux référentiels liés respectivement aux tiges AB et A'B' comme le montre la figure ci-contre. Notons les événements suivants :

 $\begin{array}{l} E_0= \, \text{ ``} A \quad \text{et B' co\"incident ", } E_1= \, \text{ ``} A \quad \text{et A' co\"incident ", } \\ E_2= \, \text{ ``} B \quad \text{et B' co\"incident ", } E_3= \, \text{ ``} B \quad \text{et A' co\"incident ".} \end{array}$



1. Ecrire, en fonction de β , γ et L, les coordonnées des événements E_0 , E_1 , E_2 et E_3 dans les référentiels \mathcal{R} et \mathcal{R}' .

Transformation de Lorentz
$$\begin{cases} ct = \gamma(ct' + \beta.x') \\ x = \gamma(\beta.ct' + x') \end{cases} \text{ et} \begin{cases} ct' = \gamma(ct - \beta.x) \\ x' = \gamma(-\beta.ct + x) \end{cases}$$

Evénement
$$E_0 = \langle A \rangle$$
 et B' coïncident $\rangle \ldots x_0 = 0 \ldots x_0 = 0 \ldots x_0' = 0 \ldots$

Ce quí donne
$$E_0 \begin{pmatrix} ct_0 = 0 \\ x_0 = 0 \end{pmatrix}_{\mathcal{R}} \quad \text{et} \quad E_0 \begin{pmatrix} ct_0' = 0 \\ x_0' = 0 \end{pmatrix}_{\mathcal{R}'}$$

Evénement
$$E_1 = \langle A | \text{et } A' \text{ coïncident } \rangle$$
 $x_1 = 0$ $x_1' = -\alpha.L$

Ce quí donne
$$E_1 \begin{pmatrix} ct_1 = \alpha L/\gamma \beta \\ x_1 = 0 \end{pmatrix}_{\mathcal{R}} \qquad et \qquad E_1 \begin{pmatrix} ct_1' = \alpha L/\beta \\ x_1' = -\alpha L \end{pmatrix}_{\mathcal{R}'}$$

Evénement
$$E_2 = \langle \langle B \rangle$$
 et B' coïncident \rangle $x_2 = L$ et $x_2' = 0$

$$\mathcal{D}onc = \begin{cases} ct_2 = \gamma(ct_2' + \beta.0) \\ L = \gamma(\beta.ct_2' + 0) \end{cases} \text{ et } \begin{cases} ct_2' = \gamma(ct_2 - \beta.L) \\ 0 = \gamma(-\beta.ct_2 + L) \end{cases}$$

Ce qui donne
$$E_2 \begin{pmatrix} ct_2 = L/\beta \\ x_2 = L \end{pmatrix}_{\mathcal{R}} \qquad \text{et} \qquad \left[E_2 \begin{pmatrix} ct_2' = L/\gamma\beta \\ x_2' = 0 \end{pmatrix}_{\mathcal{R}'} \right]$$

$$\begin{cases} ct_3 = \gamma(ct_3' - \beta \alpha L) \\ L = \gamma(\beta.ct_3' - \alpha L) \end{cases} et \begin{cases} ct_3' = \gamma(ct_3 - \beta.L) \\ -\alpha L = \gamma(-\beta.ct_3 + L) \end{cases}$$

Ce quí donne
$$E_3\begin{pmatrix} ct_3 = (\alpha + \gamma)L/\gamma\beta \\ x_3 = L \end{pmatrix}_{\mathcal{R}} = t \qquad et \qquad E_3\begin{pmatrix} ct_3' = (1 + \alpha\gamma)L/\gamma\beta \\ x_3' = -\alpha L \end{pmatrix}_{\mathcal{R}'}$$

2. Calculer le carré de l'intervalle entre les deux événements E_1 et E_2 .

$$s_{12}^2 = (ct_2 - ct_1)^2 - (x_2 - x_1)^2 = \left(\frac{L}{\beta} - \frac{\alpha L}{\gamma \beta}\right)^2 - (L - 0)^2 = \left(\frac{1}{\gamma^2 \beta^2} (\gamma - \alpha)^2 - 1\right) L^2$$

$$s_{12}^2 = (\gamma^2 - 2\alpha\gamma + \alpha^2 - \gamma^2\beta^2) \frac{L^2}{\gamma^2\beta^2} = \left(-2\alpha\gamma + \alpha^2 + \gamma^2(1-\beta^2)\right) \frac{L^2}{\gamma^2\beta^2}$$

$$\gamma^2(1-\beta^2)=1 \ \dots$$

$$s_{12}^2 = \frac{1 - 2\alpha\gamma + \alpha^2}{\gamma^2 \beta^2} L^2$$

3. Vérifier l'invariance de cet intervalle. Quel est son genre ? Expliquer.

$$s_{12}^{\prime 2} = (ct_2^{\prime} - ct_1^{\prime})^2 - (x_2^{\prime} - x_1^{\prime})^2 = \left(\frac{L}{\gamma\beta} - \frac{\alpha L}{\beta}\right)^2 - (\alpha L)^2 = \left(\frac{(1 - \gamma\alpha)^2}{\gamma^2\beta^2} - \alpha^2\right)L^2 = s_{12}^2$$

L'intervalle est invariant par changement de référentiel

Pour $\alpha \in [\gamma(1-\beta), \gamma(1+\beta)]$ $\Rightarrow s_{12}^2 < 0$ Intervalle genre espace

Pour $\alpha \in [0, \gamma(1-\beta)] \cup [\gamma(1+\beta), +\infty[$ $s_{12}^2 > 0$ n Intervalle genre temps

Pour $\alpha = \gamma(1 \pm \beta)$ $s_{12}^2 = 0$ Intervalle genre lumière

- 4. Peut-on inverser les chronologies des événements E_1 et E_2 par un changement de référentiel ? (oui/non)
- 5. Calculer le carré de l'intervalle entre les deux événements E_1 et E_3 .

$$s_{13}^{2} = (ct_{3} - ct_{1})^{2} - (x_{3} - x_{1})^{2} = \left(\frac{(\alpha + \gamma)L}{\gamma\beta} - \frac{\alpha L}{\gamma\beta}\right)^{2} - (L - 0)^{2} = \left(\frac{1}{\beta^{2}} - 1\right)L^{2} = \left(\frac{1 - \beta^{2}}{\beta^{2}}\right)L^{2}$$
owme
$$(1 - \beta^{2}) = 1/\gamma^{2}$$

$$s_{13}^2 = L^2/\gamma^2 \beta^2$$

6. Quel est son genre? Expliquer.

$$s_{13}^2 > 0$$

L'intervalle est du genre temps car il concerne le même point matériel A'

- 7. Peut-on inverser les chronologies des événements E_1 et E_3 par un changement de référentiel ? ($\frac{\text{oui}}{\text{non}}$)
- 8. Pour quelle valeur $\,lpha_{\mathcal{R}}\,$ de $\,lpha\,$ les événements $\,E_1\,$ et $\,E_2\,$ sont simultanés dans $\,\mathcal{R}\,$?

 E_1 et E_2 sont simultanés dans \mathcal{R} , donc $ct_1 = ct_2$

$$\frac{\alpha L}{\gamma \beta} = \frac{L}{\beta} \qquad \Rightarrow \qquad \boxed{\alpha_{\mathcal{R}} = \gamma}$$

9. Pour quelle valeur $\,lpha_{{\mathcal R}'}\,$ de $\,lpha\,$ les événements $\,E_1\,$ et $\,E_2\,$ sont simultanés dans $\,{\mathcal R}'\,$?

 E_1 et E_2 sont simultanés dans \mathcal{R}' , donc $ct'_1 = ct'_2$

$$\frac{\alpha L}{\beta} = \frac{L}{\gamma \beta} \qquad \Rightarrow \qquad \boxed{\alpha_{\mathcal{R}'} = \frac{1}{\gamma}}$$

10. Application numérique (des questions 2, 5, 8 et 9) : L=1 m et $v=(\sqrt{35}/6)$. $c \Rightarrow \beta=\sqrt{35}/6$ et $\gamma=6$

 $s_{12}^2 = (1 - 12\alpha + \alpha^2)/35$ $s_{13}^2 = 1/35 = 0.0385$ $\alpha_{R'} = 1/6 = 0.1667$ $\alpha_{\mathcal{R}} = 6$