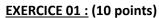
FACULTÉ DES SCIENCES EXACTES ET INFORMATIQUE

ÉPREUVE DE RATTRAPAGE

MODULE : PHYSIQUE VI – ÉLECTROMAGNETISME. DURÉE : 01 Heure 30 Minutes.

QUESTIONS DE COURS : (03 points)

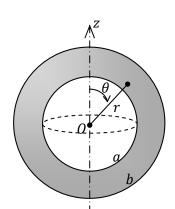
- 1. A partir de la forme locale du théorème de Gauss, trouver l'équation de Poisson du potentiel scalaire V.
- 2. A partir de la forme locale du théorème d'Ampère, trouver l'équation de Poisson du potentiel vecteur \vec{A} .



Une coquille sphérique de rayon intérieur a et de rayon extérieur b=2a est chargée avec une densité volumique :

$$\rho(r) = \frac{\lambda_0}{r^2} \quad \text{pour} \quad a \le r \le b$$

Tel que $\,r\,$ est la distance par rapport au centre de la sphère, et $\,\lambda_0\,$ est une constante.

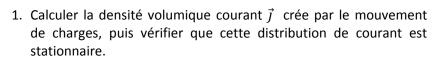


- 1. Déterminer la charge totale Q_{tot} de la coquille sphérique.
- 2. En considérant la symétrie de la distribution de charges, trouver la direction du champ électrostatique en un point quelconque de l'espace.
- 3. En utilisant la symétrie, donner la valeur du champ électrostatique au centre de la coquille.
- 4. Utiliser le théorème de GAUSS pour déterminer le vecteur champ électrostatique $\vec{E}(r)$ en tout point de l'espace.
- 5. Calculer à partir de 4, l'expression de $div(ec{E})$ pour chaque zone. Que remarquez-vous ?
- 6. Tracer l'allure de E(r) en fonction de r.
- 7. Que peut-on dire, dans ce cas, sur la continuité du champ électrostatique ?

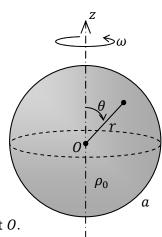
Remarque : Toutes les valeurs demandées doivent être calculées en fonction de ε_0 , a, λ_0 et r.

EXERCICE 02: (07 points)

On fait tourner une sphère de rayon a chargée uniformément sur tout son volume ($\rho=\rho_0=$ constante) autour de l'axe (Oz) avec une vitesse angulaire constante ($\varphi^{\bullet}=\omega=$ constante).



- 2. En utilisant la loi de Biot et Savart, trouver le vecteur champ magnétostatique $\vec{B}(r)$ au centre de la sphère O.
- 3. En utilisant la symétrie justifier la direction du champ magnétique au point O.



Remarque: Toutes les valeurs demandées doivent être calculées en fonction de μ_0 , α , ρ_0 , ω et r.

On donne la divergence et le déplacement élémentaire en coordonnées sphérique (r, θ, φ) :

$$div(\vec{A}) = \frac{\partial A_r}{\partial r} + \frac{2}{r}A_r + \frac{1}{r}\frac{\partial A_\theta}{\partial \theta} + \frac{1}{r \cdot \tan \theta}A_\theta + \frac{1}{r \cdot \sin \theta}\frac{\partial A_\varphi}{\partial \varphi} \qquad ; \qquad d\vec{r} = dr \cdot \vec{e}_r + r \cdot d\theta \cdot \vec{e}_\theta + r \sin \theta \cdot d\varphi \cdot \vec{e}_\varphi$$